EECS201000
Introduction to Programming Laboratory

Homework 4: Blocked All-Pairs Shortest Path
Due: Aug 3, 2017, 8AM

1 GOAL

This assignment helps you get familiar with CUDA on multi-GPU environment by
implementing a blocked all-pairs shortest path algorithm. We encourage you to optimize
your program by exploring different optimizing strategies for optimization points.

2 PROBLEM DESCRIPTION

In this assignment, you are asked to modify sequential Floyd-Warshall algorithm to a
parallelized CUDA version which take advantages of multiple GPUs.

Givenan N x N matrix W = [w(i, j)] where w(i, j) > 0 represents the distance (weight
of the edge) from a vertex i to a vertex j in a simple directed graph with N vertices. We
define an N x N matrix D = [d (i, j)] where d (i, j) denotes the shortest-path distance
from a vertex i to a vertex j. Let D® = [d®) (i, j)] be the result which all the
intermediate vertices are in the set {1,2, -+, k}.

We define d® (i, j) as follows:
w(i, j) if k=0;
d9@N =1 ((=D (; 7y gUe=D(; G-k)
min (d (i,),d (i,k)+d (k,])) if k>1.
The matrix DY) = dM (i,) gives the answer to the APSP problem.

In the blocked APSP algorithm, we partition D into [N/B] x [N /B] blocks of B X B
submatrices. The number B is called blocking factor. For instance, we divide a 6 X 6
matrix into 3 x 3 submatrices (or blocks) by B = 2.

Dan | Daz | Pas

D1y | D2 | Pes)

Dz | De2y | Peae)

Figure 1: Divide a matrix by B = 2

Blocked version of Floyd-Warshall algorithm will perform [N /B] rounds, and each
round is divided into 3 phases. It performs B iterations in each phase.

Assumes a block is identified by its index (I,]), where 1 < I,] < [N/B]. The block with

index (1,/) is denoted by D{f,.

In the following explanation, we assumes N = 6 and B = 2. The execution flow is
described step by step as follows:

® Phase 1: Self-dependent blocks

In the K -th iteration, the 1% phase is to compute B x B pivot block D>

(K.K) *
For instance, in the 1% iteration, Dl(,zl) is computed as follows:

d®(1,1) = min (d(°>(1,1), d©(1,1) + d(°>(1,1))
d®(1,2) = min (d©(1,2),dO(1,1) + d©(1,2))
d(2,1) = min (d©(2,1),d(21) + d©(1,1))
d™(2,2) = min (d©(2,2),d®(2,1) + d(°>(1,2))
)
)
)

d®(1,1) = min (d(1>(1,1), dD(1,2) + dD(2,1)
d®(1,2) = min (d(1>(1,2), dD(1,2) + dV(2,2)
d®(2,1) = min (d(1>(2,1), dD(2,2) +dD(2,1)

d®(2,2) = min (d(1>(2,2), d(2,2) + d(1>(2,2))

Note that result of d® depends on the result of d) and therefore cannot be
computed in parallel with the computation of d(¥.

-2-

Phase 2: Pivot-row and pivot-column blocks

In the K-th iteration, it computes all Dy x> and D{ > where h # K.

The result of pivot-row/pivot-column blocks depend on the result in Phase 1 and
itself
(2

For instance, in the 1% iteration, the result of D 3, depends on D((i)l) and D((f')”:
d™(1,5) = min (d(°>(1,5), d@(1,1) + d(°>(1,5))
d®(1,6) = min (d©(1,6),d?(1,1) + d©(1,6)
d®(2,5) = min (d©(2,5),d?(2,1) + d©(1,5)
dV(2,6) = min (d©@(2,6),d? (2,1) + d©(1,6)

(d)
()
()
d®(1,5) = min (d(1>(1 5),d®(1,2) + dD(2, 5))
d?(1,6) = min (d®(1,6),d?)(1,2) + dP(2,6))
d?(2,5) = min (d®(2,5),d?(2,2) + dD(2,9))
d®(2,6) = min (d(1>(2 6),d?(2,2) + dD(2, 6))

Phase 3: Other blocks

In the K-th iteration, it computes all D) where hy, h, # K.
(hy,hz2)

The result of these blocks depend on the result in Phase 2 and itself.

. . . . 2 2 2) .
For instance, in the 1% iteration, the result of D((z‘)3) depends on D((z,)1) and D((L)g).

d®(3,5) = min (d©(3,5),d?(3,1) + d?(1,5))

dW(3,6) = min(d©@(3,6),d?(3,1) + d?(1,6)

dW(4,5) = min (d©@(4,5),d? (4,1) + dP(1,5)
d®(4,6) = min (d©(4,6),d? (4,1) + d?(1,6)

d®(3,6) = min(d™(3,6),d?(3,2) + d?(2,6)
d®(4,5) = min (d®(4,5),d? (4,2) + dP(2,5)

()
()
()
d?(3,5) = min (dM(3,5),d?(3,2) + d? (2,5))
()
()
d?(4,6) = min (dM(4,6),d?)(4,2) + d? (2,6))

(@) Phase 1 (b) Phase 2 (c) Phase 3

Figure 2: The 3 phases of blocked FW algorithm in the 1% iteration

@ A@
3y D3

D3) .
Des) U

The computations of D and its dependencies are illustrated in Figure 3.

(d) Phase 1 (e) Phase 2 (f) Phase 3
Figure 3: Dependencies of D2, D), in the 1% iteration

In this particular example where N = 6 and B = 2, we will require [N/B] = 3 rounds.

(@) Round 1 (b) Round 2 (c) Round 3

Figure 4: Blocked FW algorithm in each iteration

-4-

3 INPUT / OUTPUT FORMAT

1.
2.

Your program is required to read an input file, and generate output in another file.

Your program accepts 2 input parameters. They are:

I~ (String) the input file name
i~ (String) the output file name
iii ~ (Integer) the blocking factor

Make sure users can assign test cases through command line. For instance:

$./executable in _file out file 32

TAs will judge your program as follows:

$ diff -b out file answer

The 1% line of an input test case consists of 2 integers N (1 < N < 10000) and
M (0 < M < 107) separated by a single space, which represents number of vertices
and number of edge weight assignments respectively.

Each of the following M lines consists of 3 integers i,j and W (i # j), separated by
a single space between any two numbers.

® jrepresents the index of the source vertex (1 <i < N)
® jrepresents the index of the destination vertex (1 < j < N)

® W represents the distance (weight of edge) from vertex i to vertex j (0 < W <
100)

Edges which are not listed in the input file do not exist in the graph. That is, for all
i # j,if edge(i,) does not show up in the input at all, vertex i does not have an
edge to vertex j. But since we are dealing with a directed graph, this does NOT
imply that edge(j, i) is also non-existent.

Besides, if there are re-assignments of an edge, please follow the latest one.

[s104012345@pp01 ~]# cat testcase

4 4

29
1255 55 1
3 66
21

66

4 5

(@) Content of a sample input file (b) The corresponding graph
Figure 5: Sample Input

4. For output file, list the shortest-path distance of all vertex pairs.

Assume N represents total number of vertices, the output file should consists of N
lines, each line consists of N numbers and separate them by a single space.

The number at the i line and the j™ column is the shortest-path distance from the i"
vertex to the | vertex if there is a path; otherwise, the corresponding output should
be INF.

[s104012345@pp01 ~]# cat output
@ 55 121 60

INF @ 66 5
INF 106
INF INF INF ©

Figure 6: Sample output
The sample test cases are provided in /home/ipl2017/shared/hw4 on pp31.

4 WORKING ITEMS

You are required to implement 2 versions of blocked Floyd-Warshall algorithm under the
given restrictions.

1. Single GPU
® Implement blocked APSP algorithm as described in Section 2.
® The main algorithm should be implemented in CUDA C/C++ kernel functions.

® Achieve better performance than sequential Floyd-Warshall implementation.
-6 -

Multi GPUs implementation with OpenMP

® The restrictions of single-GPU version still hold.

® Able to utilize multiple GPUs available on single node.
® Achieve better performance than single GPU version.

Makefile

Please refer to the example in /home/ipl2017/shared/hw4 on apolloGPU.

Don’t modify execution file name(HW4_cuda.exe, HW4_openmp.exe) in sample
Makefile.

README

You should specify your best block factor in README, TAs will use this
configuration to test your performance.

Please refer to the example in /home/ipl2017/shared/hw4 on apolloGPU.

OPTIMIZATION HINTS

® Shared memory

® Streaming

® Resolve bank conflicts

® Dynamic load-balancing (for openMP and MPI)

GRADING

Correctness (70%)
i~ [50%] Single-GPU
ii ~ [20%] Multi-GPU implementation with OpenMP

Performance (20%)

® Performance is measured by the execution time of your program using ‘time’
Linux command.

® Points are giving according to the performance ranking of your program among
all the students.

Demo (10%)

® Each student is given 10 minutes to explain your implementation followed by
some questions from TA.

® No debugging or code modification is allowed during the demo.
-7-

® Points are given according to your understanding and explanation of your code,
and your answers of the TA questions.

REMINDER

Please upload the following files to HW_submission/HW4 directory on
apolloGPU under your home directory before 8/3 8:00AM (The folder will be
locked after deadline)

i~ HW4 {student-ID} _cuda.cu

ii ~ HW4_ {student-ID} openmp.cu
iii ~ Makefile

iv~ README

Make sure your compile script can execute correctly and your code has no compile
error before you upload your homework.

We provide sample code seq_FW.cpp and block_FW.cpp in
/home/ipl2017/shared/hw4 on apolloGPU.

Since we have limited resources for you guys to use, please start your work ASAP.
Do not leave it until the last day!

0 will be given to cheater (even copying code from the Internet), but discussion on
code is encouraged.

Asking questions through iLMS or by email are welcomed!

	1 Goal
	2 Problem Description
	3 Input / Output Format
	4 Working Items
	5 Optimization Hints
	6 Grading
	7 Reminder

