
- 1 -

EECS201000
Introduction to Programming Laboratory

Homework 4: Blocked All-Pairs Shortest Path

Due: Aug 3, 2017, 8AM

1 GOAL
This assignment helps you get familiar with CUDA on multi-GPU environment by
implementing a blocked all-pairs shortest path algorithm. We encourage you to optimize
your program by exploring different optimizing strategies for optimization points.

2 PROBLEM DESCRIPTION
In this assignment, you are asked to modify sequential Floyd-Warshall algorithm to a
parallelized CUDA version which take advantages of multiple GPUs.

Given an 𝑁 × 𝑁 matrix 𝑊 = [𝑤(𝑖, 𝑗)] where 𝑤(𝑖, 𝑗) ≥ 0 represents the distance (weight
of the edge) from a vertex 𝑖 to a vertex 𝑗 in a simple directed graph with 𝑁 vertices. We
define an 𝑁 × 𝑁 matrix 𝐷 = [𝑑(𝑖, 𝑗)] where 𝑑(𝑖, 𝑗) denotes the shortest-path distance
from a vertex 𝑖 to a vertex 𝑗. Let 𝐷(𝑘) = �𝑑(𝑘)(𝑖, 𝑗)� be the result which all the
intermediate vertices are in the set {1,2,⋯ ,𝑘}.

We define 𝑑(𝑘)(𝑖, 𝑗) as follows:

𝑑(𝑘)(𝑖, 𝑗) = �
𝑤(𝑖, 𝑗) 𝑖𝑖 𝑘 = 0;

min �𝑑(𝑘−1)(𝑖, 𝑗),𝑑(𝑘−1)(𝑖,𝑘) + 𝑑(𝑘−1)(𝑘, 𝑗)� 𝑖𝑖 𝑘 ≥ 1.

The matrix 𝐷(𝑁) = 𝑑(𝑁)(𝑖, 𝑗) gives the answer to the APSP problem.

In the blocked APSP algorithm, we partition 𝐷 into ⌈𝑁/𝐵⌉× ⌈𝑁/𝐵⌉ blocks of 𝐵 × 𝐵
submatrices. The number 𝐵 is called blocking factor. For instance, we divide a 6 × 6
matrix into 3 × 3 submatrices (or blocks) by 𝐵 = 2.

- 2 -

𝐷(1,1) 𝐷(1,2) 𝐷(1,3)

𝐷(2,1) 𝐷(2,2) 𝐷(2,3)

𝐷(3,1) 𝐷(3,2) 𝐷(3,3)

Figure 1: Divide a matrix by 𝐵 = 2

Blocked version of Floyd-Warshall algorithm will perform ⌈𝑁/𝐵⌉ rounds, and each
round is divided into 3 phases. It performs 𝐵 iterations in each phase.

Assumes a block is identified by its index (𝐼, 𝐽), where 1 ≤ 𝐼, 𝐽 ≤ ⌈𝑁/𝐵⌉. The block with
index (𝐼, 𝐽) is denoted by 𝐷(𝐼,𝐽)

(𝑘) .

In the following explanation, we assumes 𝑁 = 6 and 𝐵 = 2. The execution flow is
described step by step as follows:

 Phase 1: Self-dependent blocks
In the 𝐾-th iteration, the 1st phase is to compute 𝐵 × 𝐵 pivot block 𝐷(𝐾,𝐾)

(𝐾×𝐵).

For instance, in the 1st iteration, 𝐷1,1
(2) is computed as follows:

𝑑(1)(1,1) = min �𝑑(0)(1,1),𝑑(0)(1,1) + 𝑑(0)(1,1)�

𝑑(1)(1,2) = min �𝑑(0)(1,2),𝑑(0)(1,1) + 𝑑(0)(1,2)�

𝑑(1)(2,1) = min �𝑑(0)(2,1),𝑑(0)(2,1) + 𝑑(0)(1,1)�

𝑑(1)(2,2) = min �𝑑(0)(2,2),𝑑(0)(2,1) + 𝑑(0)(1,2)�

𝑑(2)(1,1) = min �𝑑(1)(1,1),𝑑(1)(1,2) + 𝑑(1)(2,1)�

𝑑(2)(1,2) = min �𝑑(1)(1,2),𝑑(1)(1,2) + 𝑑(1)(2,2)�

𝑑(2)(2,1) = min �𝑑(1)(2,1),𝑑(1)(2,2) + 𝑑(1)(2,1)�

𝑑(2)(2,2) = min �𝑑(1)(2,2),𝑑(1)(2,2) + 𝑑(1)(2,2)�

Note that result of 𝑑(2) depends on the result of 𝑑(1) and therefore cannot be
computed in parallel with the computation of 𝑑(1).

- 3 -

 Phase 2: Pivot-row and pivot-column blocks
In the 𝐾-th iteration, it computes all 𝐷(ℎ,𝐾)

(𝐾×𝐵) and 𝐷(𝐾,ℎ)
(𝐾×𝐵) where ℎ ≠ 𝐾.

The result of pivot-row/pivot-column blocks depend on the result in Phase 1 and
itself
For instance, in the 1st iteration, the result of 𝐷(1,3)

(2) depends on 𝐷(1,1)
(2) and 𝐷(1,3)

(0) :

𝑑(1)(1,5) = min �𝑑(0)(1,5),𝑑(2)(1,1) + 𝑑(0)(1,5)�

𝑑(1)(1,6) = min �𝑑(0)(1,6),𝑑(2)(1,1) + 𝑑(0)(1,6)�

𝑑(1)(2,5) = min �𝑑(0)(2,5),𝑑(2)(2,1) + 𝑑(0)(1,5)�

𝑑(1)(2,6) = min �𝑑(0)(2,6),𝑑(2)(2,1) + 𝑑(0)(1,6)�

𝑑(2)(1,5) = min �𝑑(1)(1,5),𝑑(2)(1,2) + 𝑑(1)(2,5)�

𝑑(2)(1,6) = min �𝑑(1)(1,6),𝑑(2)(1,2) + 𝑑(1)(2,6)�

𝑑(2)(2,5) = min �𝑑(1)(2,5),𝑑(2)(2,2) + 𝑑(1)(2,5)�

𝑑(2)(2,6) = min �𝑑(1)(2,6),𝑑(2)(2,2) + 𝑑(1)(2,6)�

 Phase 3: Other blocks
In the 𝐾-th iteration, it computes all 𝐷(ℎ1,ℎ2)

(𝐾×𝐵) where ℎ1,ℎ2 ≠ 𝐾.
The result of these blocks depend on the result in Phase 2 and itself.

For instance, in the 1st iteration, the result of 𝐷(2,3)
(2) depends on 𝐷(2,1)

(2) and 𝐷(1,3)
(2) :

𝑑(1)(3,5) = min �𝑑(0)(3,5),𝑑(2)(3,1) + 𝑑(2)(1,5)�

𝑑(1)(3,6) = min �𝑑(0)(3,6),𝑑(2)(3,1) + 𝑑(2)(1,6)�

𝑑(1)(4,5) = min �𝑑(0)(4,5),𝑑(2)(4,1) + 𝑑(2)(1,5)�

𝑑(1)(4,6) = min �𝑑(0)(4,6),𝑑(2)(4,1) + 𝑑(2)(1,6)�

𝑑(2)(3,5) = min �𝑑(1)(3,5),𝑑(2)(3,2) + 𝑑(2)(2,5)�

𝑑(2)(3,6) = min �𝑑(1)(3,6),𝑑(2)(3,2) + 𝑑(2)(2,6)�

𝑑(2)(4,5) = min �𝑑(1)(4,5),𝑑(2)(4,2) + 𝑑(2)(2,5)�

𝑑(2)(4,6) = min �𝑑(1)(4,6),𝑑(2)(4,2) + 𝑑(2)(2,6)�

- 4 -

(a) Phase 1

Pivot
block

Pivot
row

Pivot
row

Pivot
column

Pivot
column

(b) Phase 2

Pivot
block

Pivot
row

Pivot
row

Pivot
column

Pivot
column

(c) Phase 3

Figure 2: The 3 phases of blocked FW algorithm in the 1st iteration

The computations of 𝐷(1,3)
(2) ,𝐷(2,3)

(2) and its dependencies are illustrated in Figure 3.

 𝐷(1,3)

 𝐷(2,3)

(d) Phase 1

(e) Phase 2

(f) Phase 3

Figure 3: Dependencies of 𝐷(1,3)
(2) ,𝐷(2,3)

(2) in the 1st iteration

In this particular example where 𝑁 = 6 and 𝐵 = 2, we will require ⌈𝑁/𝐵⌉ = 3 rounds.

pivot

(a) Round 1

 pivot

(b) Round 2

 pivot

(c) Round 3

Figure 4: Blocked FW algorithm in each iteration

- 5 -

3 INPUT / OUTPUT FORMAT
1. Your program is required to read an input file, and generate output in another file.

2. Your program accepts 2 input parameters. They are:

i、 (String) the input file name
ii、 (String) the output file name
iii、 (Integer) the blocking factor

Make sure users can assign test cases through command line. For instance:

$./executable in_file out_file 32

TAs will judge your program as follows:

$ diff -b out_file answer

3. The 1st line of an input test case consists of 2 integers 𝑵 (1 ≤ 𝑁 ≤ 10000) and
𝑴 (0 ≤ 𝑀 ≤ 109) separated by a single space, which represents number of vertices
and number of edge weight assignments respectively.

Each of the following 𝑀 lines consists of 3 integers 𝒊, 𝒋 and 𝑾 (𝑖 ≠ 𝑗), separated by
a single space between any two numbers.

 𝒊 represents the index of the source vertex (1 ≤ 𝑖 ≤ 𝑁)

 𝒋 represents the index of the destination vertex (1 ≤ 𝑗 ≤ 𝑁)

 𝑾 represents the distance (weight of edge) from vertex 𝑖 to vertex 𝑗 (0 ≤ 𝑊 ≤
100)

Edges which are not listed in the input file do not exist in the graph. That is, for all
𝑖 ≠ 𝑗, if edge(𝑖, 𝑗) does not show up in the input at all, vertex 𝑖 does not have an
edge to vertex 𝑗. But since we are dealing with a directed graph, this does NOT
imply that edge(𝑗, 𝑖) is also non-existent.

Besides, if there are re-assignments of an edge, please follow the latest one.

- 6 -

(a) Content of a sample input file (b) The corresponding graph

Figure 5: Sample Input

4. For output file, list the shortest-path distance of all vertex pairs.

Assume 𝑁 represents total number of vertices, the output file should consists of 𝑁
lines, each line consists of 𝑁 numbers and separate them by a single space.

The number at the ith line and the jth column is the shortest-path distance from the ith
vertex to the jth vertex if there is a path; otherwise, the corresponding output should
be INF.

Figure 6: Sample output

The sample test cases are provided in /home/ipl2017/shared/hw4 on pp31.

4 WORKING ITEMS
You are required to implement 2 versions of blocked Floyd-Warshall algorithm under the
given restrictions.

1. Single GPU

 Implement blocked APSP algorithm as described in Section 2.

 The main algorithm should be implemented in CUDA C/C++ kernel functions.

 Achieve better performance than sequential Floyd-Warshall implementation.

[s104012345@pp01 ~]# cat testcase
4 4
1 2 55
2 3 66
3 2 1
2 4 5

[s104012345@pp01 ~]# cat output
0 55 121 60
INF 0 66 5
INF 1 0 6
INF INF INF 0

1 2

3

4
55

5

66

1

- 7 -

2. Multi GPUs implementation with OpenMP

 The restrictions of single-GPU version still hold.

 Able to utilize multiple GPUs available on single node.

 Achieve better performance than single GPU version.

3. Makefile
Please refer to the example in /home/ipl2017/shared/hw4 on apolloGPU.
Don’t modify execution file name(HW4_cuda.exe, HW4_openmp.exe) in sample
Makefile.

4. README
You should specify your best block factor in README, TAs will use this
configuration to test your performance.
Please refer to the example in /home/ipl2017/shared/hw4 on apolloGPU.

5 OPTIMIZATION HINTS
 Shared memory

 Streaming

 Resolve bank conflicts

 Dynamic load-balancing (for openMP and MPI)

6 GRADING
1. Correctness (70%)

i、 [50%] Single-GPU

ii、 [20%] Multi-GPU implementation with OpenMP

2. Performance (20%)

 Performance is measured by the execution time of your program using ‘time’
Linux command.

 Points are giving according to the performance ranking of your program among
all the students.

3. Demo (10%)

 Each student is given 10 minutes to explain your implementation followed by
some questions from TA.

 No debugging or code modification is allowed during the demo.

- 8 -

 Points are given according to your understanding and explanation of your code,
and your answers of the TA questions.

7 REMINDER
1. Please upload the following files to HW_submission/HW4 directory on

apolloGPU under your home directory before 8/3 8:00AM (The folder will be
locked after deadline)

i、 HW4_{student-ID}_cuda.cu

ii、 HW4_{student-ID}_openmp.cu

iii、 Makefile

iv、 README

Make sure your compile script can execute correctly and your code has no compile
error before you upload your homework.

2. We provide sample code seq_FW.cpp and block_FW.cpp in
/home/ipl2017/shared/hw4 on apolloGPU.

3. Since we have limited resources for you guys to use, please start your work ASAP.
Do not leave it until the last day!

4. 0 will be given to cheater (even copying code from the Internet), but discussion on
code is encouraged.

5. Asking questions through iLMS or by email are welcomed!

	1 Goal
	2 Problem Description
	3 Input / Output Format
	4 Working Items
	5 Optimization Hints
	6 Grading
	7 Reminder

