
1

EECS201000
Introduction to Programming Laboratory

Homework 1: Odd-Even Sort

Due: July 10, 2017, 8AM

1 GOAL

This assignment helps you get familiar with MPI by implementing odd-even sort. We

encourage you to optimize your program by exploring different parallelizing strategies.

2 PROBLEM DESCRIPTION

In this assignment, you are required to implement odd-even sort algorithm using MPI

Library under the restriction that MPI process can only send messages to its

neighbor processes. Odd-even sort is a comparison sort which consists of two main

phases: even-phase and odd-phase.

In even-phase, all even/odd indexed pairs of adjacent elements are compared. If a pair is

in the wrong order, the elements are switched. Similarly, the same process repeats for

odd/even indexed pairs in odd-phase. The odd-even sort algorithm works by alternating

these two phases until the list is completely sorted.

In order for you to understand this algorithm better, the execution flow of odd-even sort

is illustrated step by step as below: (We are sorting the list into ascending order in this

case)

1. [Even-phase] even/odd indexed adjacent elements are grouped into pairs.

2. [Even-phase] elements in a pair are switched if they are in the wrong order.

6 1 4 8 2 5 9 3

0 1 2 3 4 5 6 7 Index

Value

1 6 4 8 2 5 3 9

0 1 2 3 4 5 6 7 Index

Value

2

3. [Odd-phase] odd/even indexed adjacent elements are grouped into pairs.

4. [Odd-phase] elements in a pair are switched if they are in the wrong order.

5. Run even-phase and odd-phase alternatively until no swap-work happens in

both even-phase and odd phase.

3 INPUT / OUTPUT FORMAT

1. Your programs are required to read an input file, and generate output in another file.

2. Your program accepts 3 input parameters, separated by space. They are:

i、 (Integer) the size of the list n (0 ≤ 𝑛 ≤ 2147483647)

ii、 (String) the input file name

iii、 (String) the output file name

Make sure users can assign test cases through command line. For instance:

$ mpirun ./HW1_s106012345.exe 1000 in_file out_file

3. The input file lists n 32-bit floats in binary format. Please refer to the sample input

files.

4. The output file lists the n 32-bit floats from the input file in ascending order. Please

refer to the sample output files located at /home/ipl2017/shared/hw1

1 6 4 8 2 5 3 9

0 1 2 3 4 5 6 7 Index

Value

1 4 6 2 8 3 5 9

0 1 2 3 4 5 6 7 Index

Value

3

4 OPTIMIZATION HINTS

 You can send multiple items in a message to reduce swapping iterations.

 You are allowed to use gather and scatter before or after swapping iterations

(not in between).

 You can try to overlap computation time and communication time as much as

possible.

 You can try to overlap the operations between iterations.

 If you are not sure whether your implementation follows the rules, please

discuss with TA for approval.

5 GRADING

1. Correctness (70%)

 A set of test cases will be given. You will receive the points for the test cases

you pass.

 Correctness check will be performed after the homework deadline and

before the demo. The correctness results will be given at the demo time.

 If you did not pass the test, you are given 3 days to correct your code, but you

will only receive 80% of the points after correction.

 Any correct result delivered after 3 days will only receive 60% of the points

2. Performance (20%)

 Performance is measured by the execution time of your program using ‘time’

Linux command.

 Points are giving according to the performance ranking of your program among

all the students.

3. Demo (10%)

 Each student is given 5 minutes to explain your implementation followed by

some questions from TA.

 No debugging or code modification is allowed during the demo.

 Points are given according to your understanding and explanation of your code,

and your answers of the TA questions.

4

6 SUBMISSION

 Please upload the following files to HW_submission/HW1 directory on apollo31

under your home directory before 7/10(Mon) 8:00AM (The folder will be locked

after deadline)

i、 HW1_{account_ID}.c

Make sure your compile script can execute correctly and your code has no compile

error in the uploaded folder

7 REMINDER

 We provide sample testcase, judge script and README under

/home/ipl2017/shared/hw1, please refer to README to learn how to use.

 You may write your own file reader to print out the values in the input and

output files for verification.

 Since we have limited resources, please start your work ASAP. Do not leave it

until the last day!

 Do NOT try to abuse the computing nodes by ssh to them directly. If we ever

find you doing that, you will get 0 point for the homework!

 0 will be given to cheater (even copying code from the Internet), but discussion on

code is encouraged.

 Asking questions through iLMS is welcomed!

