
Performance (Memory)
Optimization

National Tsing-Hua University
2017, Summer Semester

Communication vs Computation
 Peak performance for Kepler
 The peak processing performance is 3935 Gflops.
 The bandwidth is 250GB/s, which equals to 63G

floating point data per second.
 The ratio is about 60 times

 Instruction execution
 Each computation instruction takes 1~4 cycles
 Each load/store instruction for global memory access

takes 400~800 cycles
Memory access to shared memory can be 1~20 cycles
 The ratio is about 100 times

2 NTHU LSA Lab

Data Pre-fetch and Reuse
 GPU has faster memory spaces (but smaller)
 Shared memory / L1 cache
 Register file

 Solution:
 Hardware: prefetch data to shared memory or

registers for later computation (hardware)
 Software/Programmer: minimize memory usage &

reuse the data in shared memory or registers as many
times as possible

3 NTHU LSA Lab

Outline
 Host memory  Device/Global memory

 Pined memory
 Asynchronous data transfer
 Streams

 Global memory  shared memory or register
 Tiled algorithm
 Memory coalescing

 Shared memory  register
 Bank conflicts
 Memory padding

4 NTHU LSA Lab

Outline
 Host memory  Device/Global memory

 Pined memory
 Asynchronous data transfer
 Streams

 Global memory  shared memory or register
 Tiled algorithm
 Memory coalescing

 Shared memory  register
 Bank conflicts
 Memory padding

5 NTHU LSA Lab

Host-Device Data Transfer
 Device to host memory bandwidth much lower than

device to device bandwidth
 8 GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 280)

 Minimize transfers
 Intermediate data can be allocated, operated on, and de-

allocated without ever copying them to host memory

 Group transfers
 One large transfer much better than many small ones

 Asynchronous data transfer
 Overlap communication and computation time

NTHU LSA Lab 6

Page-Locked Data Transfers (Zero-copy)
 “Zero-copy” refers to direct device access to host

memory
 Device threads can read directly from host memory over

PCI-e without using cudaMemcpy H2D or D2H

GPU A

GPU B

CPU

 PCI-E data

data data

NTHU LSA Lab 7

Page-Locked Data Transfers (Zero-copy)
 cudaMallocHost() allows allocation of page-

locked (“pinned”) host memory

 Enables highest cudaMemcpy performance
 3.2 GB/s on PCI-e x16 Gen1
 5.2 GB/s on PCI-e x16 Gen2

 Use with caution!!
Allocating too much page-locked memory can

reduce overall system performance
Only for data that cannot be reused

NTHU LSA Lab 8

cudaHostAlloc

 cudaHostAlloc(): allocates page-locked host
memory
 Pageable memory cannot be directly accessed by the GPU

 To access page-locked host memory from device
1. Allocate or register with cudaHostAllocMapped flag
2. Map a device pointer to it using

cudaHostGetDevicePointer()

 To access page-locked host memory from all devices,
also add the cudaHostAllocPortable flag

NTHU LSA Lab 9

Example: zero-copy
cudaHostAlloc(&in, bytes, cudaHostAllocMapped);

cudaHostAlloc(&buffer, bytes, cudaHostAllocMapped |

 cudaHostAllocPortable);

cudaHostAlloc(&out, bytes, cudaHostAllocMapped);

cudaSetDevice(0);

cudaHostGetDevicePointer(&din[0], in, 0);

cudaHostGetDevicePointer(&dout[0], buffer, 0);

ker1<<<b, t>>>(dout[0], din[0], otherArgs);

cudaSetDevice(1);

cudaHostGetDevicePointer(&din[1], buffer, 0);

cudaHostGetDevicePointer(&dout[1], out, 0);

ker2<<<b, t>>>(dout[1], din[1], otherArgs);

NTHU LSA Lab 10

Overlapping Data Transfer & Computation
 Async and Stream APIs allow overlap of H2D

or D2H data transfers with computation

NTHU LSA Lab 11

H2D(Async) Kernel D2H(Async) Serial

H2

K1

D1

K2

D2

K3

D3

H3 H1
3 way
Concurrent
(using 3 streams)

Asynchronous Functions
 To facilitate concurrent execution between host

and device, some function calls are asynchronous:
 Control is returned to the host thread before the

device has completed the requested task.

 Asynchronous functions:
 Kernel launches
 Asynchronous memory copy and set options:

cudaMemcpyAsync, cudaMemsetAsync
 cudaMemcpy within the same device
 H2D cudaMemcpy of 64kB or less

12 NTHU LSA Lab

Synchronous Computation
cudaMalloc (&dev1, size) ;
double* host1 = (double*) malloc (&host1, size) ;
…
// cudaMemcpy blocks until copy is completed
cudaMemcpy (dev1, host1, size, H2D) ;
// two kernels are serialized and executed on device
kernel2 <<< grid, block>>> (…, dev2, …);
kernel3 <<< grid, block>>> (…, dev3, …);
// cudaMemcpy starts after kernels finish
// and blocks until copy is completed
cudaMemcpy (host4, dev4, size, D2H) ;
CPU_func();
…

 CPU and GPU are synchronized due to
 cudaMemcpy not kernel launch
 Kernel functions from the same process
 (default stream) are serialized,
 and not overlap on GPU

13

CPU GPU
cudaMemcpy

kernel2

kernel3

cudaMemcpy

CPU_func()

NTHU LSA Lab

Kernels from a
single thread
are serialized

Asynchronous Computation
cudaMalloc(&dev1, size) ;

double* host1=(double*) malloc (&host1, size);

...

cudaMemcpy (dev1, host1, size, H2D) ;

kernel2 <<< grid, block >>> (…, dev2, …);
kernel3 <<< grid, block >>> (…, dev3, …);
CPU_method ();
cudaMemcpy (host4, dev4, size, D2H) ;

...

 GPU kernels are asynchronous
 with host by default

14

CPU GPU
cudaMemcpy

kernel2

kernel3

cudaMemcpy

CPU_func()

CPU & GPU
overlapped

NTHU LSA Lab

Asynchronous Data Transfers
 Asynchronous host-device memory copy returns control

immediately to CPU
 cudaMemcpyAsync(dst, src, size, dir, stream);
 requires pinned host memory (allocated by “cudaMallocHost”)

 Overlap CPU computation with data transfer
 0 = default stream

 cudaMemcpyAsync(a_d, a_h, size,

 cudaMemcpyHostToDevice, 0);

 kernel<<<grid, block>>>(a_d);

 CPU_func();

NTHU LSA Lab 15

overlapped

CUDA Streams
 A sequence of operations that execute on the device in the

order in which they are issued by the host code
 Operations in different streams can be interleaved and, when

possible, they can even run concurrently
 A stream can be sequence of kernel launches and host-device

memory copies
 Can have several open streams to the same device at once
 Need GPUs with concurrent transfer/execution capability
 Potential performance improvement: can overlap transfer

and computation

NTHU LSA Lab 16

H2
K1

D1
K2

D2
K3

D3

H3 H1

Multiple Streams
 Different streams may execute their commands out

of order with respect to one another or concurrently
 Example

 cudaStream_t stream[2];
cudaStreamCreate(&stream[0]);
cudaStreamCreate(&stream[1]);
cudaMallocHost(&hostPtr, 2 * size); // pined(page locked mem)
for (int i = 0; i < 2; ++i) {
 cudaMemcpyAsync(/*…*/, // async memcpy
 cudaMemcpyHostToDevice, stream[i]);
 kernel<<<100,512,0,stream[i]>>>(/*…*/);
 cudaMemcpyAsync(/*…*/,
 cudaMemcpyDeviceToHost, stream[i]);
}
cudaStreamDestroy(stream[0]);
cudaStreamDestroy(stream[1]);

17 NTHU LSA Lab

How the streams overlap?
 Assume device is capable of:

 Overlapping of data transfer and kernel execution
 Concurrent kernel execution
 Concurrent data transfer

 But less benefit in unbalanced case

Host
Device memory

Kernel
execution

Device
Host memory

Stream A

Host
Device memory

Kernel
execution

Device
Host memory

Stream B
Time

18

Host Device memory

Kernel
execution

Device
Host memory

Stream A

Host Device memory

Kernel
execution

Device Host memory

Stream B

Time

NTHU LSA Lab

Explicit GPU/CPU Synchronization
 Device based

 cudaDeviceSynchronize()
Blocks host until all issued CUDA calls to a device complete

 Context based
 cudaThreadSynchronize()

Blocks host until all issued CUDA calls from a CPU thread complete

 Stream based
 cudaStreamSynchronize(stream-id)

Blocks host until all CUDA calls in stream stream-id complete

 cudaStreamQuery(stream-id)
Indicates whether event has recorded
Returns cudaSuccess, cudaErrorNotReady
Does not block CPU thread

19 NTHU LSA Lab

GPU/CPU Synchronization by Events
 cudaEventRecord (event, stream-id)

 Insert ‘events‘ in streams
 Event is recorded when GPU reaches it in a stream
 Record = assigned a timestamp (GPU clocktick)
 Useful for timing

 cudaEventSynchronize (event)
 Blocks CPU thread until event is recorded

 cudaEventQuery (stream-id, event)
 Indicates whether event has recorded
 Returns cudaSuccess, cudaErrorNotReady
 Does not block CPU thread

 cudaStreamWaitEvent (steam-id, event)
 Block a GPU stream until event reports completion

20 NTHU LSA Lab

Example: Explicit Sync
cudaEvent_t event;

cudaEventCreate (&event); // create event

// 1) H2D copy of new input

cudaMemcpyAsync (d_in, in, size, H2D, stream1);
cudaEventRecord (event, stream1); // record event

// 2) D2H copy of previous result
cudaMemcpyAsync (out, d_out, size, D2H, stream2);
// wait for event in stream1

cudaStreamWaitEvent (stream2, event);
// 3) must wait for 1 and 2

kernel <<< , , , stream2 >>> (d_in, d_out);
asynchronousCPUmethod (…) // Async GPU method

H2D (S1)

D2H (S2)

Stream 1

Stream 2

event

kernel (S2)
21 NTHU LSA Lab

Outline
 APOD process
 Host memory  Device memory

 Pined memory
 Asynchronous data transfer
 Streams

 Global memory  shared memory or register
 Tiled algorithm
 Memory coalescing

 Shared memory  register
 Bank conflicts avoidance
 Memory padding

22 NTHU LSA Lab

Example: Matrix Multiply
 Compute C = A x B, where A, B, C are N by N matrices

 Compute to Global Memory Access (CGMA) ratio
 Compute = 1 multiplication + 1 addition; Memory access = 2
CGMA = 1

 K20x (Kepler)
 Compute = 3950 GFLOPs; Global memory BW = 250GB/s
 Compute / Comm. = 3950x4/250 ≈ 64
 CGMA must increase to 64!

For i = 1:N
 For j = 1:N
 For k = 1:N
 C[i][j]+=A[i][k]*B[k][j]

23

Let each thread compute one element C[i][j]

Floating point takes 4 bytes
NTHU LSA Lab

Load Everything to Shared Memory
 Share memory is 100 times faster than global memory
 If N^2 threads are used:

 Each thread only needs to loads 2 element, and can do 2N
computations

 CGMA = N (When N > 64, memory access will not be the
bottleneck anymore)

 But shared memory is small
 The data needs to be stored is 3N2 integers or floats
 If N=1024, size = 12MB (i.e., 3*1,024*1,024*4)

NTHU LSA Lab 24

For i = 1:N
 For j = 1:N
 For k = 1:N
 C[i][j]+=A[i][k]*B[k][j]

Block(Tiled) Algorithm
 Break up the execution of the kernel into phases so

that the data accesses in each phase is focused on
one subset (tile) of data

 Not all problems can be partitioned
 into independent subsets

NTHU LSA Lab 25

Block(Tiled) Algorithm
 Rewrite for-loop by TILE_WIDTH

 We can find a small enough TILE_WIDTH, such that all the
values needed by C[i][j] are in shared memory
Every data is re-used TILE_WIDTH times

 Given 48KB shared memory:
 Max tiled size = (48KB/4B/3)^(1/2) = 64
 CGMA = number of data re-use = TILE_WIDTH = 64!

NTHU LSA Lab 26

For i’ = 1:N step TILE_WIDTH
 For j’ = 1:N step TILE_WIDTH
 For k’ = 1:N step TILE_WIDTH
 For i = i’: i’+ TILE_WIDTH - 1
 For j = j’: j’+ TILE_WIDTH - 1
 For k = k’: k’+ TILE_WIDTH - 1
 C[i][j]+=A[i][k]*B[k][j]

Total required data accesses
 = 2 x (TILE_WIDTH)^2
Total computing= 2 x (TILE_WIDTH)^3

Include output array C[][]

Tiled Algorithm
 Block algorithms or tiled algorithms:

 Split the inputs into blocks to fit into shared (cache) memory
 Increase data reuse, minimize global memory access

 Larger CGMA ratio does not always guarantee better

performance.
 CGMA ratio should be large enough to hide the

communication cost, not the larger the better
 Block algorithms cause overhead due to increasing

computations or number of thread blocks

NTHU LSA Lab 27

Outline
 APOD process
 Host memory  Device memory

 Pined memory
 Asynchronous data transfer
 Streams

 Global memory  shared memory or register
 Tiled algorithm
 Memory coalescing

 Shared memory  register
 Bank conflicts avoidance
 Memory padding

28 NTHU LSA Lab

Coalesced Memory Access
 Accessing data in the global memory is critical to the

performance of a CUDA application
 DRAM is slow comparing to other on-chip memory

 Recall that all threads in a warp execute the same
instruction
 When all threads in a warp execute a load instruction, the

hardware detects whether the threads access consecutive
memory locations

 In this favorable case, the hardware coalesces all memory
accesses into a consolidated access (single transaction) to
consecutive DRAM locations (off-chip memory)

NTHU LSA Lab 29

 Coalesced access

 Unaligned sequential addresses that fit into two 128-
byte L1-cache lines

Coalesced Memory Access

NTHU LSA Lab 30

 Misaligned sequential addresses that fall within five
32-byte L2 cache segments
 No extra data reading

 Sometimes, it will be faster than (L1) cached memory
access
 If data are not reused

Misaligned Access Without Caching

NTHU LSA Lab 31

Example: Matrix Transpose
 SDK Sample (“transpose”)
 Illustrates coalescing using shared memory
 Speedups for even small matrices

32 NTHU LSA Lab

Uncoalesced Transpose

33 NTHU LSA Lab

Coalesced Transpose

34

 Coalescing through shared memory
 Make both read & write become continuous for global memory

NTHU LSA Lab

Example: Array of structures
 An array of structures behaves like row major accesses

 struct Point { double x; double y; double
z;} A[N];

 A[threadIdx].x = …

 A structure of arrays behaves like column major
 struct PointList{double *x; double *y;
double *z;} A;

 A.x[threadIdx] = …

35 NTHU LSA Lab

A[1].x A[1].y A[1].z A[2].x A[2].y A[2].z A[3].x A[3].y A[3].z

A[1].x A[2].x A[3].x A[1].y A[2].y A[3].y A[1].z A[2].z A[3].z

AoS or SoA in CUDA?
 Prefer Structure of Arrays instead of Array of

Structures:
A warp (32 threads) should be accessing a

contiguous memory region
As opposed to a thread accessing a contiguous

region (as is often the case on CPU)

36 NTHU LSA Lab

Outline
 APOD process
 Host memory  Device memory

 Pined memory
 Asynchronous data transfer
 Streams

 Global memory  shared memory or register
 Tiled algorithm
 Memory coalescing

 Shared memory  register
 Bank conflicts avoidance
 Memory padding

37 NTHU LSA Lab

Shared Memory Architecture
 Many threads accessing memory

 Therefore, memory is divided into banks
 Successive 32-bit (4Bytes) words assigned to

successive banks
 Each bank can service one address per cycle

 A memory can service as many simultaneous
accesses as it has banks

 Multiple simultaneous accesses to a bank
result in a bank conflict
 Conflicting accesses are serialized

 Shared memory is as fast as register if no
bank conflict

NTHU LSA Lab 38

Bank7

Bank6

Bank5

Bank4

Bank3

Bank2

Bank1

Bank0

Bank15

Example: No bank Conflict
 Linear addressing

 Random 1:1 Permutation

NTHU LSA Lab 39

Thread7
Thread6
Thread5
Thread4
Thread3
Thread2
Thread1
Thread0

Thread15

Bank7
Bank6
Bank5
Bank4
Bank3
Bank2
Bank1
Bank0

Bank15

Thread7
Thread6
Thread5
Thread4
Thread3
Thread2
Thread1
Thread0

Thread15

Bank7
Bank6
Bank5
Bank4
Bank3
Bank2
Bank1
Bank0

Bank15

Example: No bank Conflict
 If all threads of a half-warp

read the identical address,
there is no bank conflict
(broadcast)
 Thread0~4 access the same

data & in the same half-warp
 The rest of threads also have

1:1 permutation and no conflict
 Not for write access

NTHU LSA Lab 40

Thread7
Thread6
Thread5
Thread4
Thread3
Thread2
Thread1
Thread0

Thread15

Bank7
Bank6
Bank5
Bank4
Bank3
Bank2
Bank1
Bank0

Bank15

Example: Bank Conflict
 n-way bank conflict

 Each bank has n different memory access

 Ex: 2-way bank conflict
 __shared__ int array[2][32];
 int offset = threadIdx.x*2;
 int temp = array[offset/32][offset%32];

41

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

NTHU LSA Lab

Bank Conflict Avoidance
 Change shared memory access pattern
 Linear addressing access
 1:1 permutation
 Broadcast: half-warp read the identical address

 Memory padding
Add addition memory space to avoid bank conflict

NTHU LSA Lab 42

Example: 2D array
 32x32 SMEM array
Warp accesses a column:
 32-way bank conflicts (threads in a warp access

the same bank)

NTHU LSA Lab 43

Memory Padding
 Add a column for padding:
 32x33 SMEM array

 Warp accesses a column:
 32 different banks, no bank conflicts

NTHU LSA Lab 44

AN EXAMPLE OF CUDA

Slides from Mark Harris, NVIDIA Developer Technology
Performance Optimization

NTHU LSA Lab 45

46

Performance!

30x Speedup!

NTHU LSA Lab

47

Run on block1 Run on block2

Block1 needs the result of 14 from
block1

T1 T2

T1

T1

T1 T2

T1

NTHU LSA Lab

48 NTHU LSA Lab

Runs on single Multiprocessor

49 NTHU LSA Lab

Executed by one Multiprocessor

50 NTHU LSA Lab

 // Use shared memory for computations

// Wait for other threads to finish moving

// Sync between threads in the same block

51

// input/output data is initiated on global memory

NTHU LSA Lab

52 NTHU LSA Lab

53 NTHU LSA Lab

Executed by one Multiprocessor

54 Highly divergent wrap (threadID 0~14)

If WARP=4:

4WARP

2WARP

1WARP

NTHU LSA Lab

Highly divergent memory access locations

55

If WARP=4:

1WARP

1WARP

1WARP

NTHU LSA Lab

NTHU LSA Lab 56

57 NTHU LSA Lab

Highly divergent memory access locations similar to the effect of random read

58

8reads

4reads

2read

NTHU LSA Lab

59

1 read per step!!!
NTHU LSA Lab

60 NTHU LSA Lab

61 NTHU LSA Lab

Half of the threads are idle since 1st iteration! 62 NTHU LSA Lab

63 NTHU LSA Lab

簡報者
簡報註解
可以多處理一層

64 NTHU LSA Lab

65
Details in backup slides

NTHU LSA Lab

66 NTHU LSA Lab

Backup

NTHU LSA Lab 67

NTHU LSA Lab 68

NTHU LSA Lab 69

NTHU LSA Lab 70

NTHU LSA Lab 71

NTHU LSA Lab 72

NTHU LSA Lab 73

NTHU LSA Lab 74

NTHU LSA Lab 75

NTHU LSA Lab 76

Reference
 NIVIDA Advanced CUDA Webinar Memory Optimizations

 http://on-demand.gputechconf.com/gtc-express/2011/
presentations/NVIDIA_GPU_Computing_Webinars_CUDA_Memo
ry_Optimization.pdf

 NVIDIA CUDA C/C++ Streams and Concurrency
 http://on-demand.gputechconf.com/gtc-express/2011/
presentations/StreamsAndConcurrencyWebinar.pdf

 Mark Harris, NVIDIA Developer Technology
 http://gpgpu.org/static/sc2007/SC07_CUDA_5_Optimization_

Harris.pdf

NTHU LSA Lab 77

	Performance (Memory) Optimization
	Communication vs Computation
	Data Pre-fetch and Reuse
	Outline
	Outline
	Host-Device Data Transfer
	Page-Locked Data Transfers (Zero-copy)
	Page-Locked Data Transfers (Zero-copy)
	cudaHostAlloc
	Example: zero-copy
	Overlapping Data Transfer & Computation
	Asynchronous Functions
	Synchronous Computation
	Asynchronous Computation
	Asynchronous Data Transfers
	CUDA Streams
	Multiple Streams
	How the streams overlap?
	Explicit GPU/CPU Synchronization
	GPU/CPU Synchronization by Events
	Example: Explicit Sync
	Outline
	Example: Matrix Multiply
	Load Everything to Shared Memory
	Block(Tiled) Algorithm
	Block(Tiled) Algorithm
	Tiled Algorithm
	Outline
	Coalesced Memory Access
	Coalesced Memory Access
	Misaligned Access Without Caching
	Example: Matrix Transpose
	Uncoalesced Transpose
	Coalesced Transpose
	Example: Array of structures
	AoS or SoA in CUDA?
	Outline
	Shared Memory Architecture
	Example: No bank Conflict
	Example: No bank Conflict
	Example: Bank Conflict
	Bank Conflict Avoidance
	Example: 2D array
	Memory Padding
	An example of CUDA
	投影片編號 46
	投影片編號 47
	投影片編號 48
	投影片編號 49
	投影片編號 50
	投影片編號 51
	投影片編號 52
	投影片編號 53
	投影片編號 54
	投影片編號 55
	投影片編號 56
	投影片編號 57
	投影片編號 58
	投影片編號 59
	投影片編號 60
	投影片編號 61
	投影片編號 62
	投影片編號 63
	投影片編號 64
	投影片編號 65
	投影片編號 66
	Backup
	投影片編號 68
	投影片編號 69
	投影片編號 70
	投影片編號 71
	投影片編號 72
	投影片編號 73
	投影片編號 74
	投影片編號 75
	投影片編號 76
	Reference

