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" J
Communication vs Computation

m Peak performance for Kepler

> The peak processing performance is 3935 Gflops.

> The bandwidth is 250GB/s, which equals to 63G
floating point data per second.

» The ratio is about 60 times
B Instruction execution

> Each computation instruction takes 1~4 cycles

> Each load/store instruction for global memory access
takes 400~800 cycles

> Memory access to shared memory can be 1~20 cycles
> The ratio is about 100 times
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" A
Data Pre-fetch and Reuse

m GPU has faster memory spaces (but smaller)
> Shared memory / L1 cache
> Register file

m Solution:

> Hardware: prefetch data to shared memory or
registers for later computation (hardware)

> Software/Programmer: minimize memory usage &
reuse the data in shared memory or registers as many
times as possible

NTHU LSA Lab 3



" A
Outline

m Host memory €=» Device/Global memory
> Pined memory
> Asynchronous data transfer
» Streams

m Global memory €=» shared memory or register
> Tiled algorithm
> Memory coalescing

m Shared memory €= register
> Bank conflicts
> Memory padding

NTHU LSA Lab



'_
Outline

m Host memory €=» Device/Global memory
> Pined memory
> Asynchronous data transfer

> Streams
i

>

>
i

>

NTHU LSA Lab



" A
Host-Device Data Transfer

m Device to host memory bandwidth much lower than
device to device bandwidth
> 8 GB/s peak (PCl-e x16 Gen 2) vs. 141 GB/s peak (GTX 280)

m Minimize transfers

> Intermediate data can be allocated, operated on, and de-
allocated without ever copying them to host memory

m Group transfers
> One large transfer much better than many small ones

m Asynchronous data transfer

> Overlap communication and computation time

NTHU LSA Lab



" A
Page-Locked Data Transfers (Zero-copy)

m “Zero-copy” refers to direct device access to host
memory

> Device threads can read directly from host memory over
PCl-e without using cudaMemcpy H2D or D2H

CPU

GPUA GPUB
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" A
Page-Locked Data Transfers (Zero-copy)

m cudaMallocHost() allows allocation of page-
locked (“pinned”) host memory

m Enables highest cudaMemcpy performance
> 3.2 GB/s on PCl-e x16 Genl
> 5.2 GB/s on PCl-e x16 Gen2

m Use with caution!!

> Allocating too much page-locked memory can
reduce overall system performance

> Only for data that cannot be reused

NTHU LSA Lab 8



" B
cudaHostAl loc

m cudaHostAlloc(): allocates page-locked host
memory

> Pageable memory cannot be directly accessed by the GPU

m To access page-locked host memory from device
1. Allocate or register with cudaHostAl locMapped flag

2. Map a device pointer to it using
cudaHostGetDevicePointer()

m To access page-locked host memory from all devices,
also add the cudaHostAl locPortable flag

NTHU LSA Lab 9



" A
Example: zero-copy

cudaHostAlloc(&in, bytes, cudaHostAllocMapped);
cudaHostAlloc(&buffer, bytes, cudaHostAllocMapped |
cudaHostAl locPortable);
cudaHostAlloc(&out, bytes, cudaHostAllocMapped);
cudaSetDevice(0);
cudaHostGetDevicePointer(&din[0], in, 0);
cudaHostGetDevicePointer(&dout[O0], buffer, 0);
kerl<<<b, t>>>(dout[O0], din[0], otherArgs);
cudaSetDevice(l);
cudaHostGetDevicePointer(&din[1l], buffer, 0);
cudaHostGetDevicePointer(&dout[1l], out, 0);
ker2<<<b, t>>>(dout[1], din[1], otherArgs);
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Overlapping Data Transfer & Computation

m Async and Stream APIs allow overlap of H2D
or D2H data transfers with computation

H1 H2 H3
3 way
Concurrent

using 3 streams ]
( J ) D1 D2 D3

NTHU LSA Lab 11



" A
Asynchronous Functions

m To facilitate concurrent execution between host
and device, some function calls are asynchronous:

> Control is returned to the host thread before the
device has completed the requested task.

m Asynchronous functions:
> Kernel launches

> Asynchronous memory copy and set options:
cudaMemcpyAsync, cudaMemsetAsync

> cudaMemcpy within the same device
> H2D cudaMemcpy of 64kB or less

NTHU LSA Lab 12



" A
Synchronous Computation

cudaMalloc ( &devl, size ) ;
double* hostl = (double*) malloc ( &hostl, size ) ;

// cudaMemcpy blocks until copy is completed

cudaMemcpy ( devl, hostl, size, H2D ) ;

// two kernels are serialized and executed on device

kernel2 <<< grid, block>>> ( .., dev2, .. ); Kernels from a
kernel3 <<< grid, block>>> ( .., dev3, .. ); single thread
// cudaMemcpy starts after kernels finish T

// and blocks until copy i1s completed are serialized

cudaMemcpy ( host4, dev4, size, D2H ) ; CPU GPU

CPU_func();

m CPU and GPU are synchronized due to

cudaMemcpy not kernel launch

m Kernel functions from the same process

(default stream) are serialized,
and not overlap on GPU

NTHU LSA Lab 13



" J
Asynchronous Computation

cudaMalloc(&devl, size) ;
double* hostl=(double*) malloc (&hostl, size);

cudaMemcpy (devl, hostl, size, H2D) ;
kernel2 <<< grid, block >>> ( .., dev2, .. ); CPU & GPU
kernel3 <<< grid, block >>> ( .., dev3, .. ); overlapped
CPU_method (O);
cudaMemcpy ( host4, dev4, size, D2H ) ;

CPU GPU

m GPU kernels are asynchronous
with host by default

NTHU LSA Lab 14



" A
Asynchronous Data Transfers

m Asynchronous host-device memory copy returns control
immediately to CPU

> cudaMemcpyAsync(dst, src, size, dir, stream);
> requires pinned host memory (allocated by “cudaMallocHost”)
m Overlap CPU computation with data transfer
> 0 = default stream
cudaMemcpyAsync(a d, a h, size,
cudaMemcpyHostToDevice, 0);

kernel<<<grid, block>>>(a d);
CPU_func(); <

Y

overlapped
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" A
CUDA Streams

m A sequence of operations that execute on the device in the
order in which they are issued by the host code

m Operations in different streams can be interleaved and, when
possible, they can even run concurrently

m A stream can be sequence of kernel launches and host-device
memory copies

m Can have several open streams to the same device at once
m Need GPUs with concurrent transfer/execution capability
m Potential performance improvement: can overlap transfer

and computation
H1 | H2 @ H3

D1 | D2 | D3
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" A
Multiple Streams

m Different streams may execute their commands out
of order with respect to one another or concurrently

m Example

cudaStream_t stream[2];
cudaStreamCreate(&stream[0]);
cudaStreamCreate(&stream[1]);
cudaMal locHost(&hostPtr, 2 * size); // pined(page locked mem)
for (int i = 0; i < 2; ++i) {
cudaMemcpyAsync(/*..*/, // async memcpy
cudaMemcpyHostToDevice, stream[i]);
kernel<<<100,512,0,stream[ 1 |>>>(/*.*/);
cudaMemcpyAsync(/*..*/,
cudaMemcpyDeviceToHost, stream[i]);
}
cudaStreamDestroy(stream[0]);

cudaStreambDestroy(stream[1]);
NTHU LSA Lab 17



"

How the streams overlap?

m Assume device is capable of:

> Overlapping of data transfer and kernel execution

» Concurrent kernel execution

» Concurrent data transfer

m But less benefit in unbalanced case

Stream A

Stream B

v

Time

NTHU LSA Lab

Stream A

Stream B

Time
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" A
Explicit GPU/CPU Synchronization

m Device based
> cudaDeviceSynchronize()
+ Blocks host until all issued CUDA calls to a device complete
m Context based
> cudaThreadSynchronize()
+ Blocks host until all issued CUDA calls from a CPU thread complete
m Stream based
> cudaStreamSynchronize(stream-id)

+ Blocks host until all CUDA calls in stream stream-id complete

> cudaStreamQuery(stream-id)
+ Indicates whether event has recorded
¢ Returns cudaSuccess, cudaErrorNotReady

+ Does not block CPU thread
NTHU LSA Lab
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" A
GPU/CPU Synchronization by Events

m cudaEventRecord (event, stream-id )

> Insert ‘events’ in streams
> Eventis recorded when GPU reaches it in a stream
> Record = assighed a timestamp (GPU clocktick)
> Useful for timing
m cudakEventSynchronize (event)
> Blocks CPU thread until event is recorded
m cudakEventQuery (stream-i1d, event)

> Indicates whether event has recorded
> Returns cudaSuccess, cudaErrorNotReady
> Does not block CPU thread

m cudaStreamWaitEvent (steam-i1d, event)

> Block a GPU stream until event reports completion

NTHU LSA Lab

20



"
Example: Explicit Sync

cudakEvent_t event;

cudakEventCreate (&event); // create event

// 1) H2D copy of new i1nput

cudaMemcpyAsync ( d_in, 1n, size, H2D, streaml );
cudaEventRecord (event, streaml); // record event
// 2) D2H copy of previous result

cudaMemcpyAsync ( out, d out, size, D2H, stream2 );
// wait for event In streaml

cudaStreamWaitEvent ( stream2, event );

// 3) must wait for 1 and 2

kernel <<< , , , stream2 >>> ( d_in, d out );
asynchronousCPUmethod ( .. ) // Async GPU method

Stream 1 H2D (S1)

Stream 2 kernel (S2)

NTHU LSA Lab
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m Global memory €=» shared memory or register
> Tiled algorithm
> Memory coalescing
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" A
Example: Matrix Multiply

m Compute C=Ax B, where A, B, Care N by N matrices

For 1 = ) 1N Let each thread compute one element CJi][j]
For jJ = 1:N J
For k = 1:N
CLallpi1+=AL1]Ik1*BLK]Li]
m Compute to Global Memory Access (CGMA) ratio
> Compute = 1 multiplication + 1 addition; Memory access = 2

=2>CGMA =1

m K20x (Kepler)
> Compute = 3950 GFLOPs; Global memory BW = 250GB/s

» Compute / Comm. = 3950x4/250 = 64
\

= CGMA must increase to 64! Eipating point takes 4 bytes
NTHU LSA Lab 23




" A
Load Everything to Shared Memory

m Share memory is 100 times faster than global memory
m [f N2 threads are used:

> Each thread only needs to loads 2 element, and can do 2N
computations

> CGMA = N (When N > 64, memory access will not be the
bottleneck anymore)
For 1 = 1:N

For J = 1:N

|For k = 1:N
CLilLi1+=ALi1[k]1*BIKILi]
m But shared memory is small

> The data needs to be stored is 3N? integers or floats
> If N=1024, size = 12MB (i.e., 3*1,024*1,024*4)

NTHU LSA Lab 24




" A
Block(Tiled) Algorithm

m Break up the execution of the kernel into phases so
that the data accesses in each phase is focused on
one subset (tile) of data

m Not all problems can be partitioned
into independent subsets

Block(0,0) Block(1,0)

/

: Pds.nl TILE_WIDTH = 2

Vidy d, Md; Md. [ PO NPd,

4| Pda 4

PED.Q-ﬁ(.E Pd?.? PdS.E

dﬂ,Mdl,MdLMdﬂ, Pda,l

Pda,n Pd, , Pd?,i’! Pd3.3
% I'\I Pds2
Block(0,1) Block(1,1) Pd3 3

NTHU LSA Lab
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" A
Block(Tiled) Algorithm

Total required data accesses
m Rewrite for-loop by TILE_ WIDTH =2 x (TILE_WIDTH)"2

For i” = 1:N step TILE WIDTH  Total computing= 2 x (TILE_WIDTH)"3

For j> = 1:N step TILE WIDTH
For k» = 1:N step TILE_WIDTH
For 1 = 1°: 1°+ TILE WIDTH - 1
For j = j>: j’+ TILE_WIDTH - 1
For k = k”: k’+ TILE_WIDTH - 1
CLilb1+=AL1IK]*BLKI1]

m We can find a small enough TILE_ WIDTH, such that all the
values needed by C|i][j] are in shared memory
=>» Every data is re-used TILE_ WIDTH times
m Given 48KB shared memor‘yyIInCIUde output array C[][]
> Max tiled size = (48KB/4B/3)"(1/2) = 64
» CGMA = number of data re-use = TILE_ WIDTH = 64!

NTHU LSA Lab 26




" A
Tiled Algorithm

m Block algorithms or tiled algorithms:

> Split the inputs into blocks to fit into shared (cache) memory

> Increase data reuse, minimize global memory access

m Larger CGMA ratio does not always guarantee better
performance.

» CGMA ratio should be large enough to hide the
communication cost, not the larger the better

> Block algorithms cause overhead due to increasing
computations or number of thread blocks

NTHU LSA Lab 27
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m Global memory €=» shared memory or register
>

> Memory coalescing
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" A
Coalesced Memory Access

m Accessing data in the global memory is critical to the
performance of a CUDA application

> DRAM is slow comparing to other on-chip memory

m Recall that all threads in a warp execute the same
Instruction

> When all threads in a warp execute a load instruction, the
hardware detects whether the threads access consecutive
memory locations

> In this favorable case, the hardware coalesces all memory
accesses into a consolidated access (single transaction) to
consecutive DRAM locations (off-chip memory)

NTHU LSA Lab 29



" A
Coalesced Memory Access

m Coalesced access

addresses from a warp

WU

0 32 64 96 128 160 192 224 256 288 320 352 384

m Unaligned sequential addresses that fit into two 128-
byte L1-cache lines

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384
NTHU LSA Lab 30




" A
Misaligned Access Without Caching

m Misaligned sequential addresses that fall within five
32-byte L2 cache segments

> No extra data reading
addresses from a warp

T T S T [ [

0 32 64 96 128 160 192 224 256 288 320 352 384
m Sometimes, it will be faster than (L1) cached memory
access

> If data are not reused

NTHU LSA Lab 31



" A
Example: Matrix Transpose

m SDK Sample (“transpose”)
m |[lustrates coalescing using shared memory

> Speedups for even small matrices

1] [s][e][x2]
[s][e][7][e] 2] [ ] [10] [14]
[o] [1o] [11] [12]

NTHU LSA Lab
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Uncoalesced Transpose
Reads input from GMEM

el

NTHU LSA Lab

GMEM

b
ide = 1, coalesced

Write

output to GMEM

_IT

. ‘ \ o‘
1,15] 2,15 | o |15,15
°

A\

GMEM
(TT---TTTT
7
—

Stride = 16, uncoalesced
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" A
Coalesced Transpose

m Coalescing through shared memory

m Make both read & write become continuous for global memory

Reads from GMEM Writes to SMEM
o [ ]
[ ] [ ]
1,0 | 1,1 1,2 1,15 1,0 | 1,1 1,2 1,15
L X N [ N N ] e e [ N N ]
® [ ]
15,0 | 15,1 | 15,2 ]| e |15,15 15,0 | 15,1 | 15,2 | e |15,15
® ®
Reads from SMEM Writes to GMEM
o L ]
[ ] [
1,1 | 2.1 15,1 1,0 | 1,1 1,2 1,15
L N N L B B ] L N W L 3 N ]
®
- 1,15 ]| 2,15 | o 15,15 15,0 | 15,1 | 15,2 | e |15,15
®
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"
Example: Array of structures

m An array of structures behaves like row major accesses
> struct Point { double Xx; double y; double
z;} AINI;
> A[threadldx].x = ..

All]l.x Allly A[l].z A[2].x A[2]lly A[2].z [ A[3].x [A[3]ly A[3].z

m A structure of arrays behaves like column major

> struct PointList{double *x; double *y;
double *z;} A;

> A_X[threadldx] = .

AlTLx AR CA[B]L X TA[TLEY A2y FAIBLY A[l]l.z A[2].z A[3].z

NTHU LSA Lab 35



" A
AoS or SoA in CUDA?

m Prefer Structure of Arrays instead of Array of
Structures:

> A warp (32 threads) should be accessing a
contiguous memory region

> As opposed to a thread accessing a contiguous
region (as is often the case on CPU)

NTHU LSA Lab
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Outline
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m Shared memory €= register

> Bank conflicts avoidance
> Memory padding

NTHU LSA Lab
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Shared Memory Architecture

m Many threads accessing memory
> Therefore, memory is divided into banks

> Successive 32-bit (4Bytes) words assigned to
successive banks

m Each bank can service one address per cycle

> A memory can service as many simultaneous
accesses as it has banks

m Multiple simultaneous accesses to a bank
result in a bank conflict
> Conflicting accesses are serialized

m Shared memory is as fast as register if no
bank conflict

NTHU LSA Lab

BankO

Bank1l

Bank2

Bank3

Bank4

Bank5

Banké6

Bank7

Bank15
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Example: No bank Conflict

m Linear addressing

ThreadO BankO
Threadl Bank1l
Thread2 Bank2
Thread3 Bank3
Thread4 Bank4
Thread5 Bank5
Thread6 Bank6
Thread?7 Bank?7
° °
° °
° °

y
Thread15' >| Bank15 '

NTHU LSA Lab

m Random 1:1 Permutation

ThreadO

BankO

Threadl

Bank1l

Thread?2

Bank2

Thread3

Bank3

Thread4

Bank4

Thread5

Bank5

Thread6

Thread?7

Bank6

Bank?7

£

Thread15

Bank15 '
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Example: No bank Conflict

m If all threads of a half-warp
read the identical address,
there is no bank conflict
(broadcast)

» Thread0~4 access the same
data & in the same half-warp

> The rest of threads also have
1:1 permutation and no conflict

> Not for write access

NTHU LSA Lab

Thread0 Bank0
Threadl Bank1l
Thread2 Bank2
Thread3 Bank3
Thread4 Bank4
Thread5 Bank5
Thread6 Bank6
Thread?7 Bank7

() °

o °

() °

y4
Thread15 '_>| Bank15 '
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Bank Conflict

Example

m n-way bank conflict

wn
wn
Q
(@]
(@]
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>
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o
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= —
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— = O
“~ c ¢
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int offset = threadIdx.x*2;

array[offset/32][offset%32];

int temp

2
5
5
7

2
3
5
5

2
1
5
3

1
9
5
1

1
7
4
9

1
5
4
7
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" A
Bank Conflict Avoidance

m Change shared memory access pattern
> Linear addressing access
> 1:1 permutation
> Broadcast: half-warp read the identical address

m Memory padding

> Add addition memory space to avoid bank conflict

NTHU LSA Lab 42
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Example: 2D array

m 32x32 SMEM array

> Warp accesses a column:
> 32-way bank conflicts (threads in a warp access

the same bank)
a1

warps

Bank 0
Bank 1

Bank 31

NTHU LSA Lab



"
Memory Padding

m Add a column for padding:
> 32x33 SMEM array

m Warp accesses a column:
> 32 different banks, no bank conflicts

warps:

0 1 2 31 padding
2 |,
Bank O P
Bank 1 e
0 1 2
Bank 31 °ee
o HE

NTHU LSA Lab
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Slides from Mark Harris, NVIDIA Developer Technology
Performance Optimization

AN EXAMPLE OF CUDA

NTHU LSA Lab
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Parallel Reduction <

NVIDIA.
“ Common and important data parallel primitive
“ Easy to implement in CUDA
u . .
Harder to get it right Performance!
« Serves as a great optimization example 30x Speedup!

“ We’ll walk step by step through 7 different versions
« Demonstrates several important optimization strategies

NTHU LSA Lab 46



Parallel Reduction <

NVIDIA.

“ Tree-based approach used within each thread block

Run on blockl

€5 )y Blockl needs the result of 14 from
blockl

“ Need to be able to use multiple thread blocks
« To process very large arrays
“ To keep all multiprocessors on the GPU busy
« Each thread block reduces a portion of the array

“ But how do we communicate partial results between
thread blocks?

NTHU LSA Lab 47



Problem: Global Synchronization <3

NVIDIA.

« If we could synchronize across all thread blocks, could easily
reduce very large arrays, right?
“ Global sync after each block produces its result
« Once all blocks reach sync, continue recursively

“ But CUDA has no global synchronization. Why?

“ Expensive to build in hardware for GPUs with high processor
count

“ Would force programmer to run fewer blocks (no more than #
multiprocessors * # resident blocks / multiprocessor) to avoid
deadlock, which may reduce overall efficiency

“ Solution: decompose into multiple kernels
« Kernel launch serves as a global synchronization point

«“ Kernel launch has negligible HW overhead, low SW overhead

NTHU LSA Lab 48



Solution: Kernel Decomposition <3
NVIDIA.

“ Avoid global sync by decomposing computation

into multiple kernel invocations
Runs on single Multiprocessor

?3 ?3 E:E ﬁ ﬁ, E;E 53 | i? Level O:
~ - H*-. S \ / ” #..-* -
- -~ Y | / ” - -

8 blocks

S -

— - b \ / F - -
“ In the case of reductions, code for all levels is the

o~ - ” -
Y \ /7 ”
sdame

Level 1:
1 block
“ Recursive kernel invocation

NTHU LSA Lab 49



Values (shared memorz}l 10

11

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

41

17

13

11

NTHU LSA Lab
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Reduction #1: Interleaved Addressing 3

// input/output data is initiated on global memory NVIDIA.
__global___ void reduce0(int *g_idata, int *g_odata) {

externt sdata[]; // Use shared memory for computations

/I each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];

—syncthreads(); // Wait for other threads to finish moving

/I do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}
__syncthreads(); // Sync between threads in the same block

}

Il write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

NTHU LSA Lab 51



Performance for 4M element reduction >
NVIDIA.

Time (222 ints) Bandwidth

Note: Block Size = 128 threads for all tests

NTHU LSA Lab 52



Reduction #1: Interleaved Addressing 3

NVIDIA.

__global___ void reduce1(int *g_idata, int *g_odata) {

extern __shared__ int sdatal];

/I each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];

__syncthreads();

/I do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) ==0) { <« _ .
sdata[tid] += sdata[tid + s]: e e
warps are very inefficient, and
% operator is very slow

}
__syncthreads();

}

Il write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

NTHU LSA Lab 53



NVIDIA.
If WARP=4:
Values(sharedmemorz}l‘lﬂ 1/8|-1|]0|-2|3|5|-2|-3|2|7|0|1M|]0]| 2
Step 1 Thread
Stride 1 IDs
Values M| 11| 2| 2
Step 2 Thread
Stride 2 IDs AWARP
Values 13(11| 2 | 2
Step 3 Thread 9
Stride 4 IDs 'WARP
Values 13| 11| 2 | 2
Step 4 Thread
Stride 8 IDs 1WARP

Values |41 (1 |7 | 1|6 |-2|8 |5 |17|-3|9 |7 |13|11| 2| 2

Highly divergent wrag (threadlD 0~14)
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Values (shared memory}l 10

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

NVIDIA.

If WARP=4:

110|123 |5 |-2|-3|2/|7] 0|1

0| 2

&

&

1 | 11

2 | 2

[? 1WARP

13| 11| 2 2
@‘/ 1WARP
13| 11| 2 2
1WARP
41 -1 6 | -2 | 8 517 | -3 | 9 7113 | 11| 2 2
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NVIDIA.
Just replace divergent branch in inner loop:

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}

__syncthreads();

}

With strided index and non-divergent branch:

for (unsigned int s=1; s < blockDim.x; s *= 2) {
intindex =2 *s * tid;

if (index < blockDim.x) {
sdataindex] += sdata[index + s];

}

__syncthreads();

kl'l'lllllf‘l\l* 56
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Performance for 4M element reduction %ﬁ

Step Cumulative
Time (2% ints) Bandwidth Speedup Speedup

Kernel 1:

interleaved ad::lressing 8.054 ms 2.083 GB/s
with divergent branching
Rernel 2 3.456ms 4.854GB/s  2.33x 2.33x

interleaved addressing
with bank conflicts
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NVIDIA.

Values (shared memory)| 10| 1 [ 8 [0 2|3 5[ 23|27 01|02

Step 1 Thread
Stride 1 IDs
Values 7 11|11 2| 2
Step 2 Thread
Stride 2 IDs 8reads
Values 7 13|11 2 | 2

Step 3 Thread
Stride 4 IDs @‘/ 4reads

Values 7 13|11 2 | 2
Step 4 Thread
Stride 8 IDs 2read

Values |41 (1 |7 | 1|6 |-2|8 |5 |17|-3|9 |7 |13|11| 2| 2

Highly divergent memory access locations similar to the effect of random read

New Problem: Shargd Memery Bank Conflicts
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NVIDIA.

Values (shared memory)|{10| 1 |8 |-1|0|-2|3|5|-2|-3|2|7]|0|11|0]?2

Step 1 Thread
Stride 8 IDs

Values

Step 2 Thread

Stride 4 IDs @ o

Values | 8 |7 |13(13| 0|9 (3 |7 |-2|-3|2 |7 |0|M1M|0) 2

Step 3 Thread
Stride 2 IDs

Values |21 (20 |13 (13| 0 |9 (3 |7 |-2|-3 |2 |7 |0|1M| 0] 2

Step 4 Thread
Stride 1 IDs

Values |41 (20 (13|13 | 0|9 | 3 |7 |2 |3 |2 |7 |0 |1MM| 0] 2
1 read per step!!!
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NVIDIA.
Just replace strided indexing in inner loop:

for (unsigned int s=1; s < blockDim.x; s *= 2) {
intindex=2*s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}

__syncthreads();

}
With reversed loop and threadlD-based indexing:

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid <s) {
sdataftid] += sdata[tid + s];
}

__syncthreads();

}
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Performance for 4M element reduction <3

Time (222 ints)

Kernel 1:

interleaved addressing 8.054 ms
with divergent branching

Kernel 2:

interleaved addressing 3.456 ms
with bank conflicts

Kernel 3: 1.722 ms

sequential addressing

Bandwidth

2.083 GBI/s

4.854 GBI/s

9.741 GBI/s

NTHU LSA Lab

NVIDIA.

Step Cumulative
Speedup Speedup

2.33x 2.33X
2.01x 4.68x
61



NVIDIA.

Values (shared memory)| 10

11

Step 1 Thread
Stride 8 IDs
Values
Step 2 Thread
Stride 4 IDs @ o
Values | 8 | 7 |13 |13 9 -2 | =3 11| 0| 2
Step 3 Thread
Stride 2 IDs
Values | 21 | 20 | 13 | 13 9 -2 | -3 11| 0 2
Step 4 Thread
Stride 1 IDs
Values | 41 | 20 | 13 | 13 9 =2 | =3 11| 0 2
Half of the threadseuedle since 1St iteration! 62



B
Reduction #4: First Add During Load <3

NVIDIA.
Halve the number of blocks, and replace single load:

I/l each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];

__syncthreads();

With two loads and first add of the reduction:

Il perform first level of reduction,

/Il reading from global memory, writing to shared memory
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
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簡報者
簡報註解
可以多處理一層


Kernel 1:

interleaved addressing
with divergent branching

Kernel 2:

interleaved addressing
with bank conflicts

Kernel 3:

sequential addressing

Kernel 4:
first add during global load

Time (222 ints) Bandwidth

8.054ms 2.083 GBI/s

3.456 ms 4.854 GBI/s

1.722ms 9.741 GBI/s

0.965ms 17.377 GBI/s

NTHU LSA Lab

Step
Speedup

2.33x

2.01x

1.78x

@

NVIDIA.

Cumulative
Speedup

2.33X

4.68x

8.34x

64



<
NVIDIA.
Step Cumulative
Time (2% ints) Bandwidth Speedup Speedup

Kernel 1:

interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kemel 2: e 3.456ms 4.854 GB/s  2.33x 2.33x

with bank conflicts

el S e 1.722ms 9.741GB/s  2.01x 4.68x

Kernel 4:

e . ot iond 0.965ms 17.377GB/s  1.78x 8.34x

1 0.536ms 31.289GB/s  1.8x  15.01x

| Kernel 6: 0.381ms 43.996 GB/s  1.41x 21.16x

completely unrolled

Rernel : 0.268ms (62.671GB/s) 1.42x  30.04x
| mu iple elements per thread

Details in backup slides
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template <unsigned int blockSize>

__device__ void warpReduce(volatile int *sdata, unsigned int tid) { @ .
if (blockSize >= 64) sdata[tid] += sdata([tid + 32]; .
if (blockSize >= 32) sdata[tid] += sdatal[tid + 16]: NVIDIA.

if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4]; : T .
if (blockSize >=  4) sdata[tid] += sdata[tid + 2]; Final Optimized Kernel |
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

}

template <unsigned int blockSize>

__global__ void reduceb(int *g_idata, int *g_odata, unsigned int n) {
extern _ _shared__ int sdata(];
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockSize*2) + tid;
unsigned int gridSize = blockSize*2*gridDim.x;
sdataftid] = 0;

while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }
__syncthreads();

if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } _ syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } _ syncthreads(); }
if (blockSize >=128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } _ syncthreads(); }

if (tid < 32) warpReduce(sdata, tid);
if (tid == 0) g_odata[blockldx.x] = sdata[0];
} NTHU LSA Lab 66



Backup

NTHU LSA Lab
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Instruction Bottleneck <5

NVIDIA.

« At 17 GB/s, we’re far from bandwidth bound
« And we know reduction has low arithmetic intensity

“ Therefore a likely bottleneck is instruction overhead

“ Ancillary instructions that are not loads, stores, or
arithmetic for the core computation

“ In other words: address arithmetic and loop overhead

W/ Strategy: unroll loops
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Unrolling the Last Warp <

NVIDIA.

“ As reduction proceeds, # “active” threads decreases
“ When s <= 32, we have only one warp left

“ Instructions are SIMD synchronous within a warp

“ That means when s <= 32:
« We don’t need to __syncthreads()

“ We don’t need “if (tid < s)” because it doesn’t save any
work

 Let’s unroll the last 6 iterations of the inner loop
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@

NVIDIA.

__device__ void warpReduce(volatile int* sdata, int tid) {
sdata[tid] += sdata[tid + 32]; 4
sdata[tid] += sdata[tid + 16];
sdata[tid] += sdata[tid + 8]; IMPORTANT.
sdata[tid] += sdata[tid + 4]; | For this to be correct,
sdata[tid] += sdata[tid + 2]; we must use the
sdata[tid] += sdata[tid + 1]; ‘volatile” keyword!
}
Il later...
for (unsigned int s=blockDim.x/2; s>32; s>>=1) {
if (tid <s)
sdata[tid] += sdata[tid + s];
__syncthreads();
}
if (tid < 32) warpReduce(sdata, tid);

Note: This saves useless work in all warps, not just the last one!

Without unrolling, all warps execute every iteration of the for loop and if statement
NTHU LSA Lab O



Kernel 1:

interleaved addressing
with divergent branching

Kernel 2:

interleaved addressing
with bank conflicts

Kernel 3:

sequential addressing

Kernel 4:
first add during global load

Kernel 5:

unroll last warp

Time (222 ints) Bandwidth
8.054ms 2.083 GBI/s
3.456 ms 4.854 GB/s

1.722ms 9.741 GBI/s
0.965ms 17.377 GBI/s

0.536 ms 31.289 GB/s

NTHU LSA Lab

Step

Speedup

2.33x

2.01x

1.78x

1.8Xx

NVIDIA.
Cumulative
Speedup

2.33X

4.68x
8.34x

15.01x

Lk



s

NVIDIA.

“ If we knew the number of iterations at compile time,
we could completely unroll the reduction

“ Luckily, the block size is limited by the GPU to 512 threads
“ Also, we are sticking to power-of-2 block sizes

“ So we can easily unroll for a fixed block size

« But we need to be generic — how can we unroll for block
sizes that we don’t know at compile time?

“ Templates to the rescue!

« CUDA supports C++ template parameters on device and
host functions

NTHU LSA Lab 2



Unrolling with Templates <3

NVIDIA.

« Specify block size as a function template parameter:

template <unsigned int blockSize>
__global__ void reduce$(int *g_idata, int *g_odata)

NTHU LSA Lab 3
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Template <unsigned int blockSize>
__device__ void warpReduce(volatile int* sdata, int tid) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

if (blockSize >= 512) {

if (tid < 256) { sdata[tid] += sdata[tid + 256]; } _ syncthreads(); }
if (blockSize >= 256) {

if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) {

if (tid < 64) { sdata[tid] += sdata[tid + 64]; } _ syncthreads(); }

if (tid < 32) warpReduce<blockSize>(sdata, tid);

Note: all code in RED will be evaluated at compile time.
Results in a veN/@fficteri inner loop! i



« Don’t we still need block size at compile time?
“ Nope, just a switch statement for 10 possible block sizes:

switch (threads)

{
case 512:

reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d_idata,
case 256:

reduceb<256><<< dimGrid, dimBlock, smemSize >>>(d_idata,
case 128:

reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata,
case 64:

reduceb< 64><<< dimGrid, dimBlock, smemSize >>>(d_idata,
case 32:

reduceb< 32><<< dimGrid, dimBlock, smemSize >>>(d_idata,
case 16:

reduceb< 16><<<dimGrid, dimBlock, smemSize >>>(d_idata,
case &:

reduceb< B8><<<dimGrid, dimBlock, smemSize >>>(d_idata,
case 4.

reduceb< 4><<<dimGrid, dimBlock, smemSize >>>(d_idata,
case 2

reduceb< 2><<<dimGrid, dimBlock, smemSize >>>(d_idata,
case 1:

reduced< 1><<<dimGrid, dipBigsls smemSize >>>(d_idata,
}

d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;

d_odata); break;

NVIDIA.

lis)



Kernel 1:

interleaved addressing
with divergent branching

Kernel 2:

interleaved addressing
with bank conflicts

Kernel 3:

sequential addressing

Kernel 4:
first add during global load

Kernel 5:

unroll last warp

Kernel 6:

completely unrolled

Time (222 ints) Bandwidth

8.054ms 2.083 GBI/s

3.456 ms 4.854 GBI/s

1.722ms 9.741 GBI/s
0.965ms 17.377 GBI/s
0.536 ms 31.289 GB/s

0.381 ms 43.996 GB/s

NTHU LSA Lab

Step
Speedup

2.33x

2.01x
1.78x
1.8Xx

1.41x

<
NVIDIA.
Cumulative
Speedup

2.33X

4.68x
8.34x
15.01x

21.16x
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" A
Reference

m N|VIDA Advanced CUDA Webinar Memory Optimizations

> http://on-demand.gputechconf.com/gtc-express/2011/
presentations/NVIDIA_GPU_Computing_ Webinars CUDA_Memo
ry_Optimization.pdf

m NVIDIA CUDA C/C++ Streams and Concurrency
> http://on-demand.gputechconf.com/gtc-express/2011/
presentations/StreamsAndConcurrencyWebinar.pdf

m Mark Harris, NVIDIA Developer Technology

> http://gpgpu.org/static/sc2007/SCO7_CUDA 5 Optimization
Harris.pdf
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