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Communication vs Computation 
 Peak performance for Kepler 
 The peak processing performance is 3935 Gflops. 
 The bandwidth is 250GB/s, which equals to 63G 

floating point data per second. 
 The ratio is about 60 times 

 Instruction execution 
 Each computation instruction takes 1~4 cycles 
 Each load/store instruction for global memory access 

takes 400~800 cycles 
Memory access to shared memory can be 1~20 cycles 
 The ratio is about 100 times 
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Data Pre-fetch and Reuse 
 GPU has faster memory spaces (but smaller) 
 Shared memory / L1 cache 
 Register file 

 Solution: 
 Hardware: prefetch data to shared memory or 

registers for later computation (hardware) 
 Software/Programmer: minimize memory usage & 

reuse the data in shared memory or registers as many 
times as possible 
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Outline 
 Host memory  Device/Global memory 

 Pined memory 
 Asynchronous data transfer 
 Streams 

 Global memory  shared memory or register 
 Tiled algorithm 
 Memory coalescing 

 Shared memory  register  
 Bank conflicts 
 Memory padding 
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Host-Device Data Transfer 
 Device to host memory bandwidth much lower than 

device to device bandwidth 
 8 GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 280) 

 Minimize transfers 
 Intermediate data can be allocated, operated on, and de-

allocated without ever copying them to host memory 

 Group transfers 
 One large transfer much better than many small ones 

 Asynchronous data transfer 
 Overlap communication and computation time 
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Page-Locked Data Transfers (Zero-copy) 
 “Zero-copy” refers to direct device access to host 

memory 
 Device threads can read directly from host memory over 

PCI-e without using cudaMemcpy H2D or D2H 

 
GPU A 

 
GPU B 

CPU 
 
 PCI-E data 

data data 
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Page-Locked Data Transfers (Zero-copy) 
 cudaMallocHost() allows allocation of page-

locked (“pinned”) host memory 

 Enables highest cudaMemcpy performance  
 3.2 GB/s on PCI-e x16 Gen1 
 5.2 GB/s on PCI-e x16 Gen2 

 Use with caution!! 
Allocating too much page-locked memory can 

reduce overall system performance 
Only for data that cannot be reused 
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cudaHostAlloc 

 cudaHostAlloc(): allocates page-locked host 
memory 
 Pageable memory cannot be directly accessed by the GPU 

 To access page-locked host memory from device 
1. Allocate or register with cudaHostAllocMapped flag 
2. Map a device pointer to it using 

cudaHostGetDevicePointer() 

 To access page-locked host memory from all devices, 
also add the cudaHostAllocPortable flag 
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Example: zero-copy 
cudaHostAlloc(&in, bytes, cudaHostAllocMapped); 

cudaHostAlloc(&buffer, bytes, cudaHostAllocMapped | 

                        cudaHostAllocPortable); 

cudaHostAlloc(&out, bytes, cudaHostAllocMapped); 

cudaSetDevice(0); 

cudaHostGetDevicePointer(&din[0], in, 0); 

cudaHostGetDevicePointer(&dout[0], buffer, 0); 

ker1<<<b, t>>>(dout[0], din[0], otherArgs); 

cudaSetDevice(1); 

cudaHostGetDevicePointer(&din[1], buffer, 0); 

cudaHostGetDevicePointer(&dout[1], out, 0); 

ker2<<<b, t>>>(dout[1], din[1], otherArgs); 
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Overlapping Data Transfer & Computation 
 Async and Stream APIs allow overlap of H2D 

or D2H data transfers with computation 
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K2 

D2 
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D3 
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3 way  
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Asynchronous Functions 
 To facilitate concurrent execution between host 

and device, some function calls are asynchronous:  
 Control is returned to the host thread before the 

device has completed the requested task.  

 Asynchronous functions: 
 Kernel launches 
 Asynchronous memory copy and set options: 

cudaMemcpyAsync, cudaMemsetAsync 
 cudaMemcpy within the same device  
 H2D cudaMemcpy of 64kB or less 
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Synchronous Computation 
cudaMalloc ( &dev1, size ) ; 
double* host1 = (double*) malloc ( &host1, size ) ; 
… 
// cudaMemcpy blocks until copy is completed 
cudaMemcpy ( dev1, host1, size, H2D ) ; 
// two kernels are serialized and executed on device 
kernel2 <<< grid, block>>> ( …, dev2, … ); 
kernel3 <<< grid, block>>> ( …, dev3, … ); 
// cudaMemcpy starts after kernels finish 
// and blocks until copy is completed 
cudaMemcpy ( host4, dev4, size, D2H ) ; 
CPU_func(); 
… 
 

 CPU and GPU are synchronized due to  
     cudaMemcpy not kernel launch 
 Kernel functions from the same process 
      (default stream) are serialized,  
      and not overlap on GPU 

13 

CPU GPU 
cudaMemcpy 

kernel2 

kernel3 

cudaMemcpy 

CPU_func() 
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single thread 
are serialized 



Asynchronous Computation 
cudaMalloc(&dev1, size) ; 

double* host1=(double*) malloc (&host1, size);  

... 

cudaMemcpy (dev1, host1, size, H2D) ; 

kernel2 <<< grid, block >>> ( …, dev2, … ); 
kernel3 <<< grid, block >>> ( …, dev3, … ); 
CPU_method (); 
cudaMemcpy ( host4, dev4, size, D2H ) ; 

... 

 

 GPU kernels are asynchronous  
    with host by default 
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CPU GPU 
cudaMemcpy 

kernel2 

kernel3 

cudaMemcpy 

CPU_func() 

CPU & GPU 
overlapped 
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Asynchronous Data Transfers 
 Asynchronous host-device memory copy returns control 

immediately to CPU 
 cudaMemcpyAsync(dst, src, size, dir, stream);  
 requires pinned host memory (allocated by “cudaMallocHost”)  

 Overlap CPU computation with data transfer 
 0 = default stream 

 cudaMemcpyAsync(a_d, a_h, size,   

  cudaMemcpyHostToDevice, 0); 

 kernel<<<grid, block>>>(a_d); 

 CPU_func(); 
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CUDA Streams 
 A sequence of operations that execute on the device in the 

order in which they are issued by the host code 
 Operations in different streams can be interleaved and, when 

possible, they can even run concurrently  
 A stream can be sequence of kernel launches and host-device 

memory copies  
 Can have several open streams to the same device at once 
 Need GPUs with concurrent transfer/execution capability 
 Potential performance improvement: can overlap transfer 

and computation 
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Multiple Streams 
 Different streams may execute their commands out 

of order with respect to one another or concurrently 
 Example 

 cudaStream_t stream[2]; 
cudaStreamCreate(&stream[0]); 
cudaStreamCreate(&stream[1]); 
cudaMallocHost(&hostPtr, 2 * size); // pined(page locked mem) 
for (int i = 0; i < 2; ++i) { 
 cudaMemcpyAsync(/*…*/,        // async memcpy 
  cudaMemcpyHostToDevice, stream[i]); 
 kernel<<<100,512,0,stream[i]>>>(/*…*/); 
 cudaMemcpyAsync(/*…*/, 
  cudaMemcpyDeviceToHost, stream[i]); 
} 
cudaStreamDestroy(stream[0]); 
cudaStreamDestroy(stream[1]); 
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How the streams overlap? 
 Assume device is capable of: 

 Overlapping of data transfer and kernel execution  
 Concurrent kernel execution  
 Concurrent data transfer  

 But less benefit in unbalanced case 
 

Host 
Device memory 

Kernel 
execution 

Device 
Host memory 

Stream A 

Host 
Device memory 

Kernel 
execution 

Device 
Host memory 

Stream B 
Time  
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Explicit GPU/CPU Synchronization 
 Device based 

 cudaDeviceSynchronize() 
Blocks host until all issued CUDA calls to a device complete 

 Context based 
 cudaThreadSynchronize() 

Blocks host until all issued CUDA calls from a CPU thread complete 

 Stream based 
 cudaStreamSynchronize(stream-id) 

Blocks host until all CUDA calls in stream stream-id complete 

 cudaStreamQuery(stream-id) 
Indicates whether event has recorded 
Returns  cudaSuccess, cudaErrorNotReady 
Does not block CPU thread 
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GPU/CPU Synchronization by Events 
 cudaEventRecord (event, stream-id )  

 Insert ‘events‘ in streams 
 Event is recorded when GPU reaches it in a stream 
 Record = assigned a timestamp (GPU clocktick) 
 Useful for timing 

 cudaEventSynchronize (event) 
 Blocks CPU thread until event is recorded 

 cudaEventQuery (stream-id, event) 
 Indicates whether event has recorded 
 Returns  cudaSuccess, cudaErrorNotReady 
 Does not block CPU thread 

 cudaStreamWaitEvent (steam-id, event) 
 Block a GPU stream until event reports completion 
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Example: Explicit Sync 
cudaEvent_t event; 

cudaEventCreate (&event); // create event 

// 1) H2D copy of new input 

cudaMemcpyAsync ( d_in, in, size, H2D, stream1 );  
cudaEventRecord (event, stream1); // record event 

// 2) D2H copy of previous result 
cudaMemcpyAsync ( out, d_out, size, D2H, stream2 );  
// wait for event in stream1 

cudaStreamWaitEvent ( stream2, event );  
// 3) must wait for 1 and 2 

kernel <<< , , , stream2 >>> ( d_in, d_out );  
asynchronousCPUmethod ( … ) // Async GPU method 

H2D (S1) 

D2H (S2) 

Stream 1 

Stream 2 

event 

kernel (S2) 
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Outline 
 APOD process 
 Host memory  Device memory 

 Pined memory 
 Asynchronous data transfer 
 Streams 

 Global memory  shared memory or register 
 Tiled algorithm 
 Memory coalescing 

 Shared memory  register  
 Bank conflicts avoidance 
 Memory padding 
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Example: Matrix Multiply 
 Compute C = A x B, where A, B, C are N by N matrices 

 
 

 

 Compute to Global Memory Access (CGMA) ratio 
 Compute = 1 multiplication + 1 addition; Memory access = 2 
CGMA = 1 

 K20x (Kepler) 
 Compute = 3950 GFLOPs; Global memory BW = 250GB/s 
 Compute / Comm. = 3950x4/250 ≈ 64 
 CGMA must increase to 64! 
 

For i = 1:N 
   For j = 1:N 
      For k = 1:N 
          C[i][j]+=A[i][k]*B[k][j]  
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Let each thread compute one element C[i][j] 

Floating point takes 4 bytes 
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Load Everything to Shared Memory 
 Share memory is 100 times faster than global memory 
 If N^2 threads are used: 

 Each thread only needs to loads 2 element, and can do 2N 
computations 

 CGMA = N (When N > 64, memory access will not be the 
bottleneck anymore) 
 
 
 
 

 But shared memory is small 
 The data needs to be stored is 3N2 integers or floats  
 If N=1024, size = 12MB (i.e., 3*1,024*1,024*4) 

NTHU LSA Lab 24 

For i = 1:N 
   For j = 1:N 
      For k = 1:N 
          C[i][j]+=A[i][k]*B[k][j]  



Block(Tiled) Algorithm 
 Break up the execution of the kernel into phases so 

that the data accesses in each phase is focused on 
one subset (tile) of data 

 Not all problems can be partitioned  
     into independent subsets 
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Block(Tiled) Algorithm 
 Rewrite for-loop by TILE_WIDTH 

 
 
 
 
 

 We can find a small enough TILE_WIDTH, such that all the 
values needed by C[i][j] are in shared memory 
Every data is re-used TILE_WIDTH times 

 Given 48KB shared memory: 
 Max tiled size = (48KB/4B/3)^(1/2) = 64 
 CGMA = number of data re-use = TILE_WIDTH = 64! 
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For i’ = 1:N step TILE_WIDTH 
   For j’ = 1:N step TILE_WIDTH 
      For k’ = 1:N step TILE_WIDTH 
    For i = i’: i’+ TILE_WIDTH - 1 
  For j = j’: j’+ TILE_WIDTH - 1 
          For k = k’: k’+ TILE_WIDTH - 1 
             C[i][j]+=A[i][k]*B[k][j]  

Total required data accesses   
                         = 2 x (TILE_WIDTH)^2 
Total computing= 2 x (TILE_WIDTH)^3 
 

Include output array C[][] 



Tiled Algorithm 
 Block algorithms or tiled algorithms:  

 Split the inputs into blocks to fit into shared (cache) memory 
 Increase data reuse, minimize global memory access 

 
 Larger CGMA ratio does not always guarantee better 

performance.   
 CGMA ratio should be large enough to hide the 

communication cost, not the larger the better 
 Block algorithms cause overhead due to increasing 

computations or number of thread blocks 
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Outline 
 APOD process 
 Host memory  Device memory 

 Pined memory 
 Asynchronous data transfer 
 Streams 

 Global memory  shared memory or register 
 Tiled algorithm 
 Memory coalescing 

 Shared memory  register  
 Bank conflicts avoidance 
 Memory padding 
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Coalesced Memory Access  
 Accessing data in the global memory is critical to the 

performance of a CUDA application 
 DRAM is slow comparing to other on-chip memory 

 Recall that all threads in a warp execute the same 
instruction 
 When all threads in a warp execute a load instruction, the 

hardware detects whether the threads access consecutive 
memory locations 

 In this favorable case, the hardware coalesces all memory 
accesses into a consolidated access (single transaction) to 
consecutive DRAM locations (off-chip memory) 
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 Coalesced access 
 
 
 

 Unaligned sequential addresses that fit into two 128-
byte L1-cache lines 

Coalesced Memory Access  
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 Misaligned sequential addresses that fall within five 
32-byte L2 cache segments 
 No extra data reading 

 
 
 
 

 Sometimes, it will be faster than (L1) cached memory 
access 
 If data are not reused 

 

Misaligned Access Without Caching 
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Example: Matrix Transpose 
 SDK Sample (“transpose”) 
 Illustrates coalescing using shared memory 
 Speedups for even small matrices 
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Uncoalesced Transpose 
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Coalesced Transpose 
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 Coalescing through shared memory 
 Make both read & write become continuous for global memory 
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Example: Array of structures 
 An array of structures behaves like row major accesses 

 struct Point { double x; double y; double 
z;} A[N]; 

 A[threadIdx].x = … 

 

 A structure of arrays behaves like column major 
 struct PointList{double *x; double *y; 
double *z;} A; 

 A.x[threadIdx] = … 
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A[1].x A[1].y A[1].z A[2].x A[2].y A[2].z A[3].x A[3].y A[3].z 

A[1].x A[2].x A[3].x A[1].y A[2].y A[3].y A[1].z A[2].z A[3].z 



AoS or SoA in CUDA? 
 Prefer Structure of Arrays instead of Array of 

Structures: 
A warp (32 threads) should be accessing a 

contiguous memory region 
As opposed to a thread accessing a contiguous 

region (as is often the case on CPU) 
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Outline 
 APOD process 
 Host memory  Device memory 

 Pined memory 
 Asynchronous data transfer 
 Streams 

 Global memory  shared memory or register 
 Tiled algorithm 
 Memory coalescing 

 Shared memory  register  
 Bank conflicts avoidance 
 Memory padding 
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Shared Memory Architecture 
 Many threads accessing memory 

 Therefore, memory is divided into banks 
 Successive 32-bit (4Bytes) words assigned to 

successive banks 
 Each bank can service one address per cycle 

 A memory can service as many simultaneous 
accesses as it has banks 

 Multiple simultaneous accesses to a bank 
result in a bank conflict  
 Conflicting accesses are serialized 

 Shared memory is as fast as register if no 
bank conflict 
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Example: No bank Conflict 
 Linear addressing 

 
 Random 1:1 Permutation 
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Example: No bank Conflict 
 If all threads of a half-warp 

read the identical address, 
there is no bank conflict 
(broadcast) 
 Thread0~4 access the same 

data & in the same half-warp 
 The rest of threads also have 

1:1 permutation and no conflict  
 Not for write access 
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Example: Bank Conflict 
 n-way bank conflict 

 Each bank has n different memory access 

 Ex: 2-way bank conflict 
 __shared__ int array[2][32]; 
 int offset = threadIdx.x*2; 
 int temp = array[offset/32][offset%32]; 
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Bank Conflict Avoidance 
 Change shared memory access pattern 
 Linear addressing access 
 1:1 permutation 
 Broadcast: half-warp read the identical address 

 
 Memory padding 
Add addition memory space to avoid bank conflict 
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Example: 2D array 
 32x32 SMEM array 
Warp accesses a column: 
 32-way bank conflicts (threads in a warp access 

the same bank) 
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Memory Padding 
 Add a column for padding: 
 32x33 SMEM array 

 Warp accesses a column: 
 32 different banks, no bank conflicts 
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AN EXAMPLE OF CUDA 

Slides from Mark Harris, NVIDIA Developer Technology 
Performance Optimization 
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Performance! 

30x Speedup! 
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Run on block1 Run on block2 

Block1 needs the result of 14 from 
block1 

T1 T2 

T1 

T1 

T1 T2 

T1 
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Runs on single Multiprocessor 
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Executed by one Multiprocessor 
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 // Use shared memory for computations 

// Wait for other threads to finish moving 

// Sync between threads in the same block 

51 

// input/output data is initiated on global memory 
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Executed by one Multiprocessor 

54 Highly divergent wrap (threadID 0~14) 

If WARP=4: 

4WARP 

2WARP 

1WARP 
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Highly divergent memory access locations 
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If WARP=4: 

1WARP 

1WARP 

1WARP 
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Highly divergent memory access locations similar to the effect of random read 
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8reads 

4reads 

2read 
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1 read per step!!! 
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Half of the threads are idle since 1st iteration! 62 NTHU LSA Lab 
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簡報者
簡報註解
可以多處理一層
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65 
Details in backup slides 
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Backup 
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Reference 
 NIVIDA Advanced CUDA Webinar Memory Optimizations 

 http://on-demand.gputechconf.com/gtc-express/2011/ 
presentations/NVIDIA_GPU_Computing_Webinars_CUDA_Memo
ry_Optimization.pdf 

 NVIDIA CUDA C/C++ Streams and Concurrency 
 http://on-demand.gputechconf.com/gtc-express/2011/ 
presentations/StreamsAndConcurrencyWebinar.pdf 

 Mark Harris, NVIDIA Developer Technology 
 http://gpgpu.org/static/sc2007/SC07_CUDA_5_Optimization_

Harris.pdf 
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