Performance (Memory)

Optimization

National Tsing-Hua University
2017, Summer Semester

" J
Communication vs Computation

m Peak performance for Kepler

> The peak processing performance is 3935 Gflops.

> The bandwidth is 250GB/s, which equals to 63G
floating point data per second.

» The ratio is about 60 times
B Instruction execution

> Each computation instruction takes 1~4 cycles

> Each load/store instruction for global memory access
takes 400~800 cycles

> Memory access to shared memory can be 1~20 cycles
> The ratio is about 100 times

NTHU LSA Lab 2

" A
Data Pre-fetch and Reuse

m GPU has faster memory spaces (but smaller)
> Shared memory / L1 cache
> Register file

m Solution:

> Hardware: prefetch data to shared memory or
registers for later computation (hardware)

> Software/Programmer: minimize memory usage &
reuse the data in shared memory or registers as many
times as possible

NTHU LSA Lab 3

" A
Outline

m Host memory €=» Device/Global memory
> Pined memory
> Asynchronous data transfer
» Streams

m Global memory €=» shared memory or register
> Tiled algorithm
> Memory coalescing

m Shared memory €= register
> Bank conflicts
> Memory padding

NTHU LSA Lab

'_
Outline

m Host memory €=» Device/Global memory
> Pined memory
> Asynchronous data transfer

> Streams
i

>

>
i

>

NTHU LSA Lab

" A
Host-Device Data Transfer

m Device to host memory bandwidth much lower than
device to device bandwidth
> 8 GB/s peak (PCl-e x16 Gen 2) vs. 141 GB/s peak (GTX 280)

m Minimize transfers

> Intermediate data can be allocated, operated on, and de-
allocated without ever copying them to host memory

m Group transfers
> One large transfer much better than many small ones

m Asynchronous data transfer

> Overlap communication and computation time

NTHU LSA Lab

" A
Page-Locked Data Transfers (Zero-copy)

m “Zero-copy” refers to direct device access to host
memory

> Device threads can read directly from host memory over
PCl-e without using cudaMemcpy H2D or D2H

CPU

GPUA GPUB

NTHU LSA Lab 7

" A
Page-Locked Data Transfers (Zero-copy)

m cudaMallocHost() allows allocation of page-
locked (“pinned”) host memory

m Enables highest cudaMemcpy performance
> 3.2 GB/s on PCl-e x16 Genl
> 5.2 GB/s on PCl-e x16 Gen2

m Use with caution!!

> Allocating too much page-locked memory can
reduce overall system performance

> Only for data that cannot be reused

NTHU LSA Lab 8

" B
cudaHostAl loc

m cudaHostAlloc(): allocates page-locked host
memory

> Pageable memory cannot be directly accessed by the GPU

m To access page-locked host memory from device
1. Allocate or register with cudaHostAl locMapped flag

2. Map a device pointer to it using
cudaHostGetDevicePointer()

m To access page-locked host memory from all devices,
also add the cudaHostAl locPortable flag

NTHU LSA Lab 9

" A
Example: zero-copy

cudaHostAlloc(&in, bytes, cudaHostAllocMapped);
cudaHostAlloc(&buffer, bytes, cudaHostAllocMapped |
cudaHostAl locPortable);
cudaHostAlloc(&out, bytes, cudaHostAllocMapped);
cudaSetDevice(0);
cudaHostGetDevicePointer(&din[0], in, 0);
cudaHostGetDevicePointer(&dout[O0], buffer, 0);
kerl<<<b, t>>>(dout[O0], din[0], otherArgs);
cudaSetDevice(l);
cudaHostGetDevicePointer(&din[1l], buffer, 0);
cudaHostGetDevicePointer(&dout[1l], out, 0);
ker2<<<b, t>>>(dout[1], din[1], otherArgs);

NTHU LSA Lab 10

"

Overlapping Data Transfer & Computation

m Async and Stream APIs allow overlap of H2D
or D2H data transfers with computation

H1 H2 H3
3 way
Concurrent

using 3 streams]
(J) D1 D2 D3

NTHU LSA Lab 11

" A
Asynchronous Functions

m To facilitate concurrent execution between host
and device, some function calls are asynchronous:

> Control is returned to the host thread before the
device has completed the requested task.

m Asynchronous functions:
> Kernel launches

> Asynchronous memory copy and set options:
cudaMemcpyAsync, cudaMemsetAsync

> cudaMemcpy within the same device
> H2D cudaMemcpy of 64kB or less

NTHU LSA Lab 12

" A
Synchronous Computation

cudaMalloc (&devl, size) ;
double* hostl = (double*) malloc (&hostl, size) ;

// cudaMemcpy blocks until copy is completed

cudaMemcpy (devl, hostl, size, H2D) ;

// two kernels are serialized and executed on device

kernel2 <<< grid, block>>> (.., dev2, ..); Kernels from a
kernel3 <<< grid, block>>> (.., dev3, ..); single thread
// cudaMemcpy starts after kernels finish T

// and blocks until copy i1s completed are serialized

cudaMemcpy (host4, dev4, size, D2H) ; CPU GPU

CPU_func();

m CPU and GPU are synchronized due to

cudaMemcpy not kernel launch

m Kernel functions from the same process

(default stream) are serialized,
and not overlap on GPU

NTHU LSA Lab 13

" J
Asynchronous Computation

cudaMalloc(&devl, size) ;
double* hostl=(double*) malloc (&hostl, size);

cudaMemcpy (devl, hostl, size, H2D) ;
kernel2 <<< grid, block >>> (.., dev2, ..); CPU & GPU
kernel3 <<< grid, block >>> (.., dev3, ..); overlapped
CPU_method (O);
cudaMemcpy (host4, dev4, size, D2H) ;

CPU GPU

m GPU kernels are asynchronous
with host by default

NTHU LSA Lab 14

" A
Asynchronous Data Transfers

m Asynchronous host-device memory copy returns control
immediately to CPU

> cudaMemcpyAsync(dst, src, size, dir, stream);
> requires pinned host memory (allocated by “cudaMallocHost”)
m Overlap CPU computation with data transfer
> 0 = default stream
cudaMemcpyAsync(a d, a h, size,
cudaMemcpyHostToDevice, 0);

kernel<<<grid, block>>>(a d);
CPU_func(); <

Y

overlapped

NTHU LSA Lab 15

" A
CUDA Streams

m A sequence of operations that execute on the device in the
order in which they are issued by the host code

m Operations in different streams can be interleaved and, when
possible, they can even run concurrently

m A stream can be sequence of kernel launches and host-device
memory copies

m Can have several open streams to the same device at once
m Need GPUs with concurrent transfer/execution capability
m Potential performance improvement: can overlap transfer

and computation
H1 | H2 @ H3

D1 | D2 | D3

NTHU LSA Lab 16

" A
Multiple Streams

m Different streams may execute their commands out
of order with respect to one another or concurrently

m Example

cudaStream_t stream[2];
cudaStreamCreate(&stream[0]);
cudaStreamCreate(&stream[1]);
cudaMal locHost(&hostPtr, 2 * size); // pined(page locked mem)
for (int i = 0; i < 2; ++i) {
cudaMemcpyAsync(/*..*/, // async memcpy
cudaMemcpyHostToDevice, stream[i]);
kernel<<<100,512,0,stream[1 |>>>(/*.*/);
cudaMemcpyAsync(/*..*/,
cudaMemcpyDeviceToHost, stream[i]);
}
cudaStreamDestroy(stream[0]);

cudaStreambDestroy(stream[1]);
NTHU LSA Lab 17

"

How the streams overlap?

m Assume device is capable of:

> Overlapping of data transfer and kernel execution

» Concurrent kernel execution

» Concurrent data transfer

m But less benefit in unbalanced case

Stream A

Stream B

v

Time

NTHU LSA Lab

Stream A

Stream B

Time

18

" A
Explicit GPU/CPU Synchronization

m Device based
> cudaDeviceSynchronize()
+ Blocks host until all issued CUDA calls to a device complete
m Context based
> cudaThreadSynchronize()
+ Blocks host until all issued CUDA calls from a CPU thread complete
m Stream based
> cudaStreamSynchronize(stream-id)

+ Blocks host until all CUDA calls in stream stream-id complete

> cudaStreamQuery(stream-id)
+ Indicates whether event has recorded
¢ Returns cudaSuccess, cudaErrorNotReady

+ Does not block CPU thread
NTHU LSA Lab

19

" A
GPU/CPU Synchronization by Events

m cudaEventRecord (event, stream-id)

> Insert ‘events’ in streams
> Eventis recorded when GPU reaches it in a stream
> Record = assighed a timestamp (GPU clocktick)
> Useful for timing
m cudakEventSynchronize (event)
> Blocks CPU thread until event is recorded
m cudakEventQuery (stream-i1d, event)

> Indicates whether event has recorded
> Returns cudaSuccess, cudaErrorNotReady
> Does not block CPU thread

m cudaStreamWaitEvent (steam-i1d, event)

> Block a GPU stream until event reports completion

NTHU LSA Lab

20

"
Example: Explicit Sync

cudakEvent_t event;

cudakEventCreate (&event); // create event

// 1) H2D copy of new i1nput

cudaMemcpyAsync (d_in, 1n, size, H2D, streaml);
cudaEventRecord (event, streaml); // record event
// 2) D2H copy of previous result

cudaMemcpyAsync (out, d out, size, D2H, stream2);
// wait for event In streaml

cudaStreamWaitEvent (stream2, event);

// 3) must wait for 1 and 2

kernel <<< , , , stream2 >>> (d_in, d out);
asynchronousCPUmethod (..) // Async GPU method

Stream 1 H2D (S1)

Stream 2 kernel (S2)

NTHU LSA Lab

"

Outline
|
[|

>

>

>

m Global memory €=» shared memory or register
> Tiled algorithm
> Memory coalescing

NTHU LSA Lab

" A
Example: Matrix Multiply

m Compute C=Ax B, where A, B, Care N by N matrices

For 1 =) 1N Let each thread compute one element CJi][j]
For jJ = 1:N J
For k = 1:N
CLallpi1+=AL1]Ik1*BLK]Li]
m Compute to Global Memory Access (CGMA) ratio
> Compute = 1 multiplication + 1 addition; Memory access = 2

=2>CGMA =1

m K20x (Kepler)
> Compute = 3950 GFLOPs; Global memory BW = 250GB/s

» Compute / Comm. = 3950x4/250 = 64
\

= CGMA must increase to 64! Eipating point takes 4 bytes
NTHU LSA Lab 23

" A
Load Everything to Shared Memory

m Share memory is 100 times faster than global memory
m [f N2 threads are used:

> Each thread only needs to loads 2 element, and can do 2N
computations

> CGMA = N (When N > 64, memory access will not be the
bottleneck anymore)
For 1 = 1:N

For J = 1:N

|For k = 1:N
CLilLi1+=ALi1[k]1*BIKILi]
m But shared memory is small

> The data needs to be stored is 3N? integers or floats
> If N=1024, size = 12MB (i.e., 3*1,024*1,024*4)

NTHU LSA Lab 24

" A
Block(Tiled) Algorithm

m Break up the execution of the kernel into phases so
that the data accesses in each phase is focused on
one subset (tile) of data

m Not all problems can be partitioned
into independent subsets

Block(0,0) Block(1,0)

/

: Pds.nl TILE_WIDTH = 2

Vidy d, Md; Md. [PO NPd,

4| Pda 4

PED.Q-ﬁ(.E Pd?.? PdS.E

dﬂ,Mdl,MdLMdﬂ, Pda,l

Pda,n Pd, , Pd?,i’! Pd3.3
% I'\I Pds2
Block(0,1) Block(1,1) Pd3 3

NTHU LSA Lab

25

" A
Block(Tiled) Algorithm

Total required data accesses
m Rewrite for-loop by TILE_ WIDTH =2 x (TILE_WIDTH)"2

For i” = 1:N step TILE WIDTH Total computing= 2 x (TILE_WIDTH)"3

For j> = 1:N step TILE WIDTH
For k» = 1:N step TILE_WIDTH
For 1 = 1°: 1°+ TILE WIDTH - 1
For j = j>: j’+ TILE_WIDTH - 1
For k = k”: k’+ TILE_WIDTH - 1
CLilb1+=AL1IK]*BLKI1]

m We can find a small enough TILE_ WIDTH, such that all the
values needed by C|i][j] are in shared memory
=>» Every data is re-used TILE_ WIDTH times
m Given 48KB shared memor‘yyIInCIUde output array C[][]
> Max tiled size = (48KB/4B/3)"(1/2) = 64
» CGMA = number of data re-use = TILE_ WIDTH = 64!

NTHU LSA Lab 26

" A
Tiled Algorithm

m Block algorithms or tiled algorithms:

> Split the inputs into blocks to fit into shared (cache) memory

> Increase data reuse, minimize global memory access

m Larger CGMA ratio does not always guarantee better
performance.

» CGMA ratio should be large enough to hide the
communication cost, not the larger the better

> Block algorithms cause overhead due to increasing
computations or number of thread blocks

NTHU LSA Lab 27

"

Outline
O
|
>
>
>
m Global memory €=» shared memory or register
>

> Memory coalescing

NTHU LSA Lab

" A
Coalesced Memory Access

m Accessing data in the global memory is critical to the
performance of a CUDA application

> DRAM is slow comparing to other on-chip memory

m Recall that all threads in a warp execute the same
Instruction

> When all threads in a warp execute a load instruction, the
hardware detects whether the threads access consecutive
memory locations

> In this favorable case, the hardware coalesces all memory
accesses into a consolidated access (single transaction) to
consecutive DRAM locations (off-chip memory)

NTHU LSA Lab 29

" A
Coalesced Memory Access

m Coalesced access

addresses from a warp

WU

0 32 64 96 128 160 192 224 256 288 320 352 384

m Unaligned sequential addresses that fit into two 128-
byte L1-cache lines

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384
NTHU LSA Lab 30

" A
Misaligned Access Without Caching

m Misaligned sequential addresses that fall within five
32-byte L2 cache segments

> No extra data reading
addresses from a warp

T T S T [[

0 32 64 96 128 160 192 224 256 288 320 352 384
m Sometimes, it will be faster than (L1) cached memory
access

> If data are not reused

NTHU LSA Lab 31

" A
Example: Matrix Transpose

m SDK Sample (“transpose”)
m |[lustrates coalescing using shared memory

> Speedups for even small matrices

1] [s][e][x2]
[s][e][7][e] 2] [] [10] [14]
[o] [1o] [11] [12]

NTHU LSA Lab

32

Uncoalesced Transpose
Reads input from GMEM

el

NTHU LSA Lab

GMEM

b
ide = 1, coalesced

Write

output to GMEM

_IT

. ‘ \ o‘
1,15] 2,15 | o |15,15
°

A\

GMEM
(TT---TTTT
7
—

Stride = 16, uncoalesced

33

" A
Coalesced Transpose

m Coalescing through shared memory

m Make both read & write become continuous for global memory

Reads from GMEM Writes to SMEM
o []
[] []
1,0 | 1,1 1,2 1,15 1,0 | 1,1 1,2 1,15
L X N [N N] e e [N N]
® []
15,0 | 15,1 | 15,2]| e |15,15 15,0 | 15,1 | 15,2 | e |15,15
® ®
Reads from SMEM Writes to GMEM
o L]
[] [
1,1 | 2.1 15,1 1,0 | 1,1 1,2 1,15
L N N L B B] L N W L 3 N]
®
- 1,15]| 2,15 | o 15,15 15,0 | 15,1 | 15,2 | e |15,15
®

NTHU LSA Lab 34

"
Example: Array of structures

m An array of structures behaves like row major accesses
> struct Point { double Xx; double y; double
z;} AINI;
> A[threadldx].x = ..

All]l.x Allly A[l].z A[2].x A[2]lly A[2].z [A[3].x [A[3]ly A[3].z

m A structure of arrays behaves like column major

> struct PointList{double *x; double *y;
double *z;} A;

> A_X[threadldx] = .

AlTLx AR CA[B]L X TA[TLEY A2y FAIBLY A[l]l.z A[2].z A[3].z

NTHU LSA Lab 35

" A
AoS or SoA in CUDA?

m Prefer Structure of Arrays instead of Array of
Structures:

> A warp (32 threads) should be accessing a
contiguous memory region

> As opposed to a thread accessing a contiguous
region (as is often the case on CPU)

NTHU LSA Lab

36

"

Outline
O
|
>
>
>
|
>
>
m Shared memory €= register

> Bank conflicts avoidance
> Memory padding

NTHU LSA Lab

37

Shared Memory Architecture

m Many threads accessing memory
> Therefore, memory is divided into banks

> Successive 32-bit (4Bytes) words assigned to
successive banks

m Each bank can service one address per cycle

> A memory can service as many simultaneous
accesses as it has banks

m Multiple simultaneous accesses to a bank
result in a bank conflict
> Conflicting accesses are serialized

m Shared memory is as fast as register if no
bank conflict

NTHU LSA Lab

BankO

Bank1l

Bank2

Bank3

Bank4

Bank5

Banké6

Bank7

Bank15

38

Example: No bank Conflict

m Linear addressing

ThreadO BankO
Threadl Bank1l
Thread2 Bank2
Thread3 Bank3
Thread4 Bank4
Thread5 Bank5
Thread6 Bank6
Thread?7 Bank?7
° °
° °
° °

y
Thread15' >| Bank15 '

NTHU LSA Lab

m Random 1:1 Permutation

ThreadO

BankO

Threadl

Bank1l

Thread?2

Bank2

Thread3

Bank3

Thread4

Bank4

Thread5

Bank5

Thread6

Thread?7

Bank6

Bank?7

£

Thread15

Bank15 '

39

Example: No bank Conflict

m If all threads of a half-warp
read the identical address,
there is no bank conflict
(broadcast)

» Thread0~4 access the same
data & in the same half-warp

> The rest of threads also have
1:1 permutation and no conflict

> Not for write access

NTHU LSA Lab

Thread0 Bank0
Threadl Bank1l
Thread2 Bank2
Thread3 Bank3
Thread4 Bank4
Thread5 Bank5
Thread6 Bank6
Thread?7 Bank7

() °

o °

() °

y4
Thread15 '_>| Bank15 '

40

Bank Conflict

Example

m n-way bank conflict

wn
wn
Q
(@]
(@]
©
>
S
o
& o
Q —
= =
= —
o H &
5 2%
— = O
“~ c ¢
T QO ®
c O L
n X £
an.l
ha _
X O -
-)
c > c
kuﬁamnG
< wn
mw |
w7
X
\/E
N

int offset = threadIdx.x*2;

array[offset/32][offset%32];

int temp

2
5
5
7

2
3
5
5

2
1
5
3

1
9
5
1

1
7
4
9

1
5
4
7
NTHU LSA Lab

1
3
4
5

9 1

1
4 4
1 3

7
3
9

5
3
7

3
3
5

1
3
3

[y

o 0 N S TR W N =D

" A
Bank Conflict Avoidance

m Change shared memory access pattern
> Linear addressing access
> 1:1 permutation
> Broadcast: half-warp read the identical address

m Memory padding

> Add addition memory space to avoid bank conflict

NTHU LSA Lab 42

"

Example: 2D array

m 32x32 SMEM array

> Warp accesses a column:
> 32-way bank conflicts (threads in a warp access

the same bank)
a1

warps

Bank 0
Bank 1

Bank 31

NTHU LSA Lab

"
Memory Padding

m Add a column for padding:
> 32x33 SMEM array

m Warp accesses a column:
> 32 different banks, no bank conflicts

warps:

0 1 2 31 padding
2 |,
Bank O P
Bank 1 e
0 1 2
Bank 31 °ee
o HE

NTHU LSA Lab

44

Slides from Mark Harris, NVIDIA Developer Technology
Performance Optimization

AN EXAMPLE OF CUDA

NTHU LSA Lab

45

Parallel Reduction <

NVIDIA.
“ Common and important data parallel primitive
“ Easy to implement in CUDA
u . .
Harder to get it right Performance!
« Serves as a great optimization example 30x Speedup!

“ We’ll walk step by step through 7 different versions
« Demonstrates several important optimization strategies

NTHU LSA Lab 46

Parallel Reduction <

NVIDIA.

“ Tree-based approach used within each thread block

Run on blockl

€5)y Blockl needs the result of 14 from
blockl

“ Need to be able to use multiple thread blocks
« To process very large arrays
“ To keep all multiprocessors on the GPU busy
« Each thread block reduces a portion of the array

“ But how do we communicate partial results between
thread blocks?

NTHU LSA Lab 47

Problem: Global Synchronization <3

NVIDIA.

« If we could synchronize across all thread blocks, could easily
reduce very large arrays, right?
“ Global sync after each block produces its result
« Once all blocks reach sync, continue recursively

“ But CUDA has no global synchronization. Why?

“ Expensive to build in hardware for GPUs with high processor
count

“ Would force programmer to run fewer blocks (no more than #
multiprocessors * # resident blocks / multiprocessor) to avoid
deadlock, which may reduce overall efficiency

“ Solution: decompose into multiple kernels
« Kernel launch serves as a global synchronization point

«“ Kernel launch has negligible HW overhead, low SW overhead

NTHU LSA Lab 48

Solution: Kernel Decomposition <3
NVIDIA.

“ Avoid global sync by decomposing computation

into multiple kernel invocations
Runs on single Multiprocessor

?3 ?3 E:E ﬁ ﬁ, E;E 53 | i? Level O:
~ - H*-. S \ / ” #..-* -
- -~ Y | / ” - -

8 blocks

S -

— - b \ / F - -
“ In the case of reductions, code for all levels is the

o~ - ” -
Y \ /7 ”
sdame

Level 1:
1 block
“ Recursive kernel invocation

NTHU LSA Lab 49

Values (shared memorz}l 10

11

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

41

17

13

11

NTHU LSA Lab

50

Reduction #1: Interleaved Addressing 3

// input/output data is initiated on global memory NVIDIA.
__global___ void reduce0(int *g_idata, int *g_odata) {

externt sdata[]; // Use shared memory for computations

/I each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];

—syncthreads(); // Wait for other threads to finish moving

/I do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}
__syncthreads(); // Sync between threads in the same block

}

Il write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

NTHU LSA Lab 51

Performance for 4M element reduction >
NVIDIA.

Time (222 ints) Bandwidth

Note: Block Size = 128 threads for all tests

NTHU LSA Lab 52

Reduction #1: Interleaved Addressing 3

NVIDIA.

__global___ void reduce1(int *g_idata, int *g_odata) {

extern __shared__ int sdatal];

/I each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];

__syncthreads();

/I do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) ==0) { <« _ .
sdata[tid] += sdata[tid + s]: e e
warps are very inefficient, and
% operator is very slow

}
__syncthreads();

}

Il write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

NTHU LSA Lab 53

NVIDIA.
If WARP=4:
Values(sharedmemorz}l‘lﬂ 1/8|-1|]0|-2|3|5|-2|-3|2|7|0|1M|]0]| 2
Step 1 Thread
Stride 1 IDs
Values M| 11| 2| 2
Step 2 Thread
Stride 2 IDs AWARP
Values 13(11| 2 | 2
Step 3 Thread 9
Stride 4 IDs 'WARP
Values 13| 11| 2 | 2
Step 4 Thread
Stride 8 IDs 1WARP

Values |41 (1 |7 | 1|6 |-2|8 |5 |17|-3|9 |7 |13|11| 2| 2

Highly divergent wrag (threadlD 0~14)

54

Values (shared memory}l 10

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

NVIDIA.

If WARP=4:

110|123 |5 |-2|-3|2/|7] 0|1

0| 2

&

&

1 | 11

2 | 2

[? 1WARP

13| 11| 2 2
@‘/ 1WARP
13| 11| 2 2
1WARP
41 -1 6 | -2 | 8 517 | -3 | 9 7113 | 11| 2 2
NTHU LSA Lab 55

NVIDIA.
Just replace divergent branch in inner loop:

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}

__syncthreads();

}

With strided index and non-divergent branch:

for (unsigned int s=1; s < blockDim.x; s *= 2) {
intindex =2 *s * tid;

if (index < blockDim.x) {
sdataindex] += sdata[index + s];

}

__syncthreads();

kl'l'lllllf‘l\l* 56
TNTTTOU LI vViE

Performance for 4M element reduction %ﬁ

Step Cumulative
Time (2% ints) Bandwidth Speedup Speedup

Kernel 1:

interleaved ad::lressing 8.054 ms 2.083 GB/s
with divergent branching
Rernel 2 3.456ms 4.854GB/s 2.33x 2.33x

interleaved addressing
with bank conflicts

NTHU LSA Lab 57

NVIDIA.

Values (shared memory)| 10| 1 [8 [0 2|3 5[23|27 01|02

Step 1 Thread
Stride 1 IDs
Values 7 11|11 2| 2
Step 2 Thread
Stride 2 IDs 8reads
Values 7 13|11 2 | 2

Step 3 Thread
Stride 4 IDs @‘/ 4reads

Values 7 13|11 2 | 2
Step 4 Thread
Stride 8 IDs 2read

Values |41 (1 |7 | 1|6 |-2|8 |5 |17|-3|9 |7 |13|11| 2| 2

Highly divergent memory access locations similar to the effect of random read

New Problem: Shargd Memery Bank Conflicts

58

NVIDIA.

Values (shared memory)|{10| 1 |8 |-1|0|-2|3|5|-2|-3|2|7]|0|11|0]?2

Step 1 Thread
Stride 8 IDs

Values

Step 2 Thread

Stride 4 IDs @ o

Values | 8 |7 |13(13| 0|9 (3 |7 |-2|-3|2 |7 |0|M1M|0) 2

Step 3 Thread
Stride 2 IDs

Values |21 (20 |13 (13| 0 |9 (3 |7 |-2|-3 |2 |7 |0|1M| 0] 2

Step 4 Thread
Stride 1 IDs

Values |41 (20 (13|13 | 0|9 | 3 |7 |2 |3 |2 |7 |0 |1MM| 0] 2
1 read per step!!!

NTHU LSA Lab 59

NVIDIA.
Just replace strided indexing in inner loop:

for (unsigned int s=1; s < blockDim.x; s *= 2) {
intindex=2*s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}

__syncthreads();

}
With reversed loop and threadlD-based indexing:

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid <s) {
sdataftid] += sdata[tid + s];
}

__syncthreads();

}

NTHU LSA Lab 60

Performance for 4M element reduction <3

Time (222 ints)

Kernel 1:

interleaved addressing 8.054 ms
with divergent branching

Kernel 2:

interleaved addressing 3.456 ms
with bank conflicts

Kernel 3: 1.722 ms

sequential addressing

Bandwidth

2.083 GBI/s

4.854 GBI/s

9.741 GBI/s

NTHU LSA Lab

NVIDIA.

Step Cumulative
Speedup Speedup

2.33x 2.33X
2.01x 4.68x
61

NVIDIA.

Values (shared memory)| 10

11

Step 1 Thread
Stride 8 IDs
Values
Step 2 Thread
Stride 4 IDs @ o
Values | 8 | 7 |13 |13 9 -2 | =3 11| 0| 2
Step 3 Thread
Stride 2 IDs
Values | 21 | 20 | 13 | 13 9 -2 | -3 11| 0 2
Step 4 Thread
Stride 1 IDs
Values | 41 | 20 | 13 | 13 9 =2 | =3 11| 0 2
Half of the threadseuedle since 1St iteration! 62

B
Reduction #4: First Add During Load <3

NVIDIA.
Halve the number of blocks, and replace single load:

I/l each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];

__syncthreads();

With two loads and first add of the reduction:

Il perform first level of reduction,

/Il reading from global memory, writing to shared memory
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();

NTHU LSA Lab 63

簡報者
簡報註解
可以多處理一層

Kernel 1:

interleaved addressing
with divergent branching

Kernel 2:

interleaved addressing
with bank conflicts

Kernel 3:

sequential addressing

Kernel 4:
first add during global load

Time (222 ints) Bandwidth

8.054ms 2.083 GBI/s

3.456 ms 4.854 GBI/s

1.722ms 9.741 GBI/s

0.965ms 17.377 GBI/s

NTHU LSA Lab

Step
Speedup

2.33x

2.01x

1.78x

@

NVIDIA.

Cumulative
Speedup

2.33X

4.68x

8.34x

64

<
NVIDIA.
Step Cumulative
Time (2% ints) Bandwidth Speedup Speedup

Kernel 1:

interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kemel 2: e 3.456ms 4.854 GB/s 2.33x 2.33x

with bank conflicts

el S e 1.722ms 9.741GB/s 2.01x 4.68x

Kernel 4:

e . ot iond 0.965ms 17.377GB/s 1.78x 8.34x

1 0.536ms 31.289GB/s 1.8x 15.01x

| Kernel 6: 0.381ms 43.996 GB/s 1.41x 21.16x

completely unrolled

Rernel : 0.268ms (62.671GB/s) 1.42x 30.04x
| mu iple elements per thread

Details in backup slides

NTHU LSA Lab 65

template <unsigned int blockSize>

__device__ void warpReduce(volatile int *sdata, unsigned int tid) { @ .
if (blockSize >= 64) sdata[tid] += sdata([tid + 32]; .
if (blockSize >= 32) sdata[tid] += sdatal[tid + 16]: NVIDIA.

if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4]; : T .
if (blockSize >= 4) sdata[tid] += sdata[tid + 2]; Final Optimized Kernel |
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

}

template <unsigned int blockSize>

__global__ void reduceb(int *g_idata, int *g_odata, unsigned int n) {
extern _ _shared__ int sdata(];
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockSize*2) + tid;
unsigned int gridSize = blockSize*2*gridDim.x;
sdataftid] = 0;

while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }
__syncthreads();

if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } _ syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } _ syncthreads(); }
if (blockSize >=128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } _ syncthreads(); }

if (tid < 32) warpReduce(sdata, tid);
if (tid == 0) g_odata[blockldx.x] = sdata[0];
} NTHU LSA Lab 66

Backup

NTHU LSA Lab

67

Instruction Bottleneck <5

NVIDIA.

« At 17 GB/s, we’re far from bandwidth bound
« And we know reduction has low arithmetic intensity

“ Therefore a likely bottleneck is instruction overhead

“ Ancillary instructions that are not loads, stores, or
arithmetic for the core computation

“ In other words: address arithmetic and loop overhead

W/ Strategy: unroll loops

NTHU LSA Lab 68

Unrolling the Last Warp <

NVIDIA.

“ As reduction proceeds, # “active” threads decreases
“ When s <= 32, we have only one warp left

“ Instructions are SIMD synchronous within a warp

“ That means when s <= 32:
« We don’t need to __syncthreads()

“ We don’t need “if (tid < s)” because it doesn’t save any
work

 Let’s unroll the last 6 iterations of the inner loop

NTHU LSA Lab 69

@

NVIDIA.

__device__ void warpReduce(volatile int* sdata, int tid) {
sdata[tid] += sdata[tid + 32]; 4
sdata[tid] += sdata[tid + 16];
sdata[tid] += sdata[tid + 8]; IMPORTANT.
sdata[tid] += sdata[tid + 4]; | For this to be correct,
sdata[tid] += sdata[tid + 2]; we must use the
sdata[tid] += sdata[tid + 1]; ‘volatile” keyword!
}
Il later...
for (unsigned int s=blockDim.x/2; s>32; s>>=1) {
if (tid <s)
sdata[tid] += sdata[tid + s];
__syncthreads();
}
if (tid < 32) warpReduce(sdata, tid);

Note: This saves useless work in all warps, not just the last one!

Without unrolling, all warps execute every iteration of the for loop and if statement
NTHU LSA Lab O

Kernel 1:

interleaved addressing
with divergent branching

Kernel 2:

interleaved addressing
with bank conflicts

Kernel 3:

sequential addressing

Kernel 4:
first add during global load

Kernel 5:

unroll last warp

Time (222 ints) Bandwidth
8.054ms 2.083 GBI/s
3.456 ms 4.854 GB/s

1.722ms 9.741 GBI/s
0.965ms 17.377 GBI/s

0.536 ms 31.289 GB/s

NTHU LSA Lab

Step

Speedup

2.33x

2.01x

1.78x

1.8Xx

NVIDIA.
Cumulative
Speedup

2.33X

4.68x
8.34x

15.01x

Lk

s

NVIDIA.

“ If we knew the number of iterations at compile time,
we could completely unroll the reduction

“ Luckily, the block size is limited by the GPU to 512 threads
“ Also, we are sticking to power-of-2 block sizes

“ So we can easily unroll for a fixed block size

« But we need to be generic — how can we unroll for block
sizes that we don’t know at compile time?

“ Templates to the rescue!

« CUDA supports C++ template parameters on device and
host functions

NTHU LSA Lab 2

Unrolling with Templates <3

NVIDIA.

« Specify block size as a function template parameter:

template <unsigned int blockSize>
__global__ void reduce$(int *g_idata, int *g_odata)

NTHU LSA Lab 3

i

Template <unsigned int blockSize>
__device__ void warpReduce(volatile int* sdata, int tid) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

if (blockSize >= 512) {

if (tid < 256) { sdata[tid] += sdata[tid + 256]; } _ syncthreads(); }
if (blockSize >= 256) {

if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) {

if (tid < 64) { sdata[tid] += sdata[tid + 64]; } _ syncthreads(); }

if (tid < 32) warpReduce<blockSize>(sdata, tid);

Note: all code in RED will be evaluated at compile time.
Results in a veN/@fficteri inner loop! i

« Don’t we still need block size at compile time?
“ Nope, just a switch statement for 10 possible block sizes:

switch (threads)

{
case 512:

reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d_idata,
case 256:

reduceb<256><<< dimGrid, dimBlock, smemSize >>>(d_idata,
case 128:

reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata,
case 64:

reduceb< 64><<< dimGrid, dimBlock, smemSize >>>(d_idata,
case 32:

reduceb< 32><<< dimGrid, dimBlock, smemSize >>>(d_idata,
case 16:

reduceb< 16><<<dimGrid, dimBlock, smemSize >>>(d_idata,
case &:

reduceb< B8><<<dimGrid, dimBlock, smemSize >>>(d_idata,
case 4.

reduceb< 4><<<dimGrid, dimBlock, smemSize >>>(d_idata,
case 2

reduceb< 2><<<dimGrid, dimBlock, smemSize >>>(d_idata,
case 1:

reduced< 1><<<dimGrid, dipBigsls smemSize >>>(d_idata,
}

d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;
d_odata); break;

d_odata); break;

NVIDIA.

lis)

Kernel 1:

interleaved addressing
with divergent branching

Kernel 2:

interleaved addressing
with bank conflicts

Kernel 3:

sequential addressing

Kernel 4:
first add during global load

Kernel 5:

unroll last warp

Kernel 6:

completely unrolled

Time (222 ints) Bandwidth

8.054ms 2.083 GBI/s

3.456 ms 4.854 GBI/s

1.722ms 9.741 GBI/s
0.965ms 17.377 GBI/s
0.536 ms 31.289 GB/s

0.381 ms 43.996 GB/s

NTHU LSA Lab

Step
Speedup

2.33x

2.01x
1.78x
1.8Xx

1.41x

<
NVIDIA.
Cumulative
Speedup

2.33X

4.68x
8.34x
15.01x

21.16x

6

" A
Reference

m N|VIDA Advanced CUDA Webinar Memory Optimizations

> http://on-demand.gputechconf.com/gtc-express/2011/
presentations/NVIDIA_GPU_Computing_ Webinars CUDA_Memo
ry_Optimization.pdf

m NVIDIA CUDA C/C++ Streams and Concurrency
> http://on-demand.gputechconf.com/gtc-express/2011/
presentations/StreamsAndConcurrencyWebinar.pdf

m Mark Harris, NVIDIA Developer Technology

> http://gpgpu.org/static/sc2007/SCO7_CUDA 5 Optimization
Harris.pdf

NTHU LSA Lab 77

	Performance (Memory) Optimization
	Communication vs Computation
	Data Pre-fetch and Reuse
	Outline
	Outline
	Host-Device Data Transfer
	Page-Locked Data Transfers (Zero-copy)
	Page-Locked Data Transfers (Zero-copy)
	cudaHostAlloc
	Example: zero-copy
	Overlapping Data Transfer & Computation
	Asynchronous Functions
	Synchronous Computation
	Asynchronous Computation
	Asynchronous Data Transfers
	CUDA Streams
	Multiple Streams
	How the streams overlap?
	Explicit GPU/CPU Synchronization
	GPU/CPU Synchronization by Events
	Example: Explicit Sync
	Outline
	Example: Matrix Multiply
	Load Everything to Shared Memory
	Block(Tiled) Algorithm
	Block(Tiled) Algorithm
	Tiled Algorithm
	Outline
	Coalesced Memory Access
	Coalesced Memory Access
	Misaligned Access Without Caching
	Example: Matrix Transpose
	Uncoalesced Transpose
	Coalesced Transpose
	Example: Array of structures
	AoS or SoA in CUDA?
	Outline
	Shared Memory Architecture
	Example: No bank Conflict
	Example: No bank Conflict
	Example: Bank Conflict
	Bank Conflict Avoidance
	Example: 2D array
	Memory Padding
	An example of CUDA
	投影片編號 46
	投影片編號 47
	投影片編號 48
	投影片編號 49
	投影片編號 50
	投影片編號 51
	投影片編號 52
	投影片編號 53
	投影片編號 54
	投影片編號 55
	投影片編號 56
	投影片編號 57
	投影片編號 58
	投影片編號 59
	投影片編號 60
	投影片編號 61
	投影片編號 62
	投影片編號 63
	投影片編號 64
	投影片編號 65
	投影片編號 66
	Backup
	投影片編號 68
	投影片編號 69
	投影片編號 70
	投影片編號 71
	投影片編號 72
	投影片編號 73
	投影片編號 74
	投影片編號 75
	投影片編號 76
	Reference

