
GPU Architecture

National Tsing-Hua University
2017, Summer Semester

Outline
 Thread execution
 Execution model
Warp
Warp Divergence

 Memory hierarchy

Parallel Programming – NTHU LSA Lab 2

Execution Model

Threads are executed by scalar
processor

Thread blocks are executed on SM
Several concurrent thread block
can reside on one SM

A kernel is launched as a grid of
thread blocks

Parallel Programming – NTHU LSA Lab 3

Software

Thread

Thread block

Grid

Hardware

Scalar processor

Stream Processor (SM)

GPU device

 CUDA threads are grouped into blocks
 All threads of the same block are executed in an SM
 SMs have shared memories, where threads within a

block can communicate
 The entire threads of a block must be executed

completely before there is space to schedule another
thread block

 Hardware schedules thread blocks onto available
SMs
 No guarantee of order of execution
 If an SM has more resources, the hardware can

schedule more blocks

Thread Execution

Parallel Programming – NTHU LSA Lab 4

 Inside the SM, threads are launched in
groups of 32, called warps
 Warps share the control part (warp scheduler)
 At any time, only one warp is executed per SM
 Threads in a warp will be executing the same

instruction (SIMD)

 In other words …
 Threads in a wrap execute physically in parallel
 Warps and blocks execute logically in parallel
 Kernel needs to sync threads within a block

 For Fermi:
 Maximum number of active blocks per SM is 8
 Maximum number of active warps per SM is 48
 Maximum number of active threads per SM is

48*32=1,536

Warp

Parallel Programming – NTHU LSA Lab 5

Warp Scheduler

Parallel Programming – NTHU LSA Lab 6

 SM hardware implements zero-
overhead Warp scheduling
 Warps whose next instruction has its

operands ready for consumption are eligible
for execution

 Wraps are switched when memory stalls
 Eligible Warps are selected for execution on

prioritized scheduling
 All threads in a Warp execute the same

instruction when selected
warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

 What if different threads in a warp need to do different things:
 Including any flow control instruction (if, switch, do, for, while)
 if(foo(threadIdx.x)){
 do_A();
 } else {
 do_B();
 }

 Different execution paths
 within a warp are serialized

 Predicated instructions which are
 carried out only if logical flag is true
 All threads compute the logical predicate and
 two predicated instructions/statements
 Potential large lost of performance

Warp Divergence

Inside a warp

Parallel Programming – NTHU LSA Lab 7

Avoid Diverging in a Warp
 Example with divergence:

if (threadIdx.x > 2) {...}

else {...}
 Branch granularity < warp size

 Example without divergence:

if (threadIdx.x / WARP_SIZE > 2) {...}

else {...}

 Different warps can execute different code with no
impact on performance

 Branch granularity is a whole multiple of warp size
8 Parallel Programming – NTHU LSA Lab

Example: Divergent Iteration

__global__ void per_thread_sum
(int *indices, float *data, float *sums){
 ...
 // number of loop iterations is
 // data dependent
 int i = threadIdx.x
 for(int j=indices[i];j<indices[i+1]; j++){
 sum += data[j];
 }
 sums[i] = sum;
}

9 Parallel Programming – NTHU LSA Lab

Iteration Divergence
 A single thread can drag a whole warp with it

for a long time
 Know your data patterns
 If data is unpredictable, try to flatten peaks by

letting threads work on multiple data items

10 Parallel Programming – NTHU LSA Lab

Unroll the for-loop
 Unroll the statements can reduce the branches

and increase the pipeline
 Example:

for (i=0;i<n;i++) {
 a = a + i;
}
 Unrolled 3 times
for (i=0;i<n;i+=3) {
 a = a + i;
 a = a + i+1;
 a = a + i+2;
}

11 Parallel Programming – NTHU LSA Lab

#pragma unroll

 The #pragma unroll directive can be used to
control unrolling of any given loop.

 must be placed immediately before the loop and
only applies to that loop

 Example:
#pragma unroll 5
for (int i = 0; i < n; ++i)
 the loop will be unrolled 5 times.
 The compiler will also insert code to ensure correctness

 #pragma unroll 1 will prevent the compiler
from ever unrolling a loop.

12 Parallel Programming – NTHU LSA Lab

Atomic Operations
 Occasionally, an application may need threads to

update a counter in shared or global memory
 __shared__ int count;

 ……

 if (……) count++;

 Synchronization problem: if two (or more) threads
execute this statement at the same time

 Solution: use atomic instructions supported by GPU
 addition / subtraction
max / min
 increment / decrement
 compare-and-swap

Parallel Programming – NTHU LSA Lab 13

Example: Histogram

/* Determine frequency of colors in a picture
colors have already been converted into ints. Each
thread looks at one pixel and increments a counter
atomically*/

__global__ void hist(int* color, int* bin){

 int i = threadIdx.x + blockDim.x *

 blockIdx.x;

 int c = colors[i];

 atomicAdd(&bin[c], 1);

}

Parallel Programming – NTHU LSA Lab 14

Example: Global Min/Max
__global__ void global_max(int* values,
int* gl_max){

 int i = threadIdx.x + blockDim.x *

 blockIdx.x;

 int val = values[i];

 atomicMax(gl_max,val);

}

 Not very fast for data in shared memory
 Only slightly slower for data in device memory

Parallel Programming – NTHU LSA Lab 15

Outline
 Thread execution
 Memory hierarchy
 Register & Local memory
 Shared memory
Global & Constant memory

Parallel Programming – NTHU LSA Lab 16

 Registers
 Read/write per-thread
 Low latency & High BW

 Shared memory
 Read/write per-block
 Similar to register performance

 Global/Local memory (DRAM)
 Global is per-grid & Local is per-thread
 High latency & Low BW
 Not cached

 Constant memory
 Read only per-grid
 Cached

GPU Memory Hierarchy

(Local Memory)

Parallel Programming – NTHU LSA Lab 17

Memory Access

On chip

Off chip

Parallel Programming – NTHU LSA Lab 18

 A store writes a line to L1
 If evicted, that line is written to L2
 The line could also be evicted from L2 and written to DRAM (global mem.)

 A load requests the line from L1
 If a hit, operation is complete
 If a miss, then requests the line from L2

If a miss, then requests the line from DRAM (global memory)
 Only GPU threads can access local memory addresses

 Register consumes zero extra clock cycles per
instruction, except
 Register read-after-write dependencies (24 cycles) and
 Register memory bank conflicts

 Register spilling

 Max number of register per threads is 63
 Local memory is used if the register limit is met
Array variables always are allocated in
 local memory (DRAM)
 Max amount of local memory per thread is 512K

Register

Parallel Programming – NTHU LSA Lab 19

 Too few threads
 can’t hide pipeline / memory access latency

 Too many threads
 register pressure
 Limited number of registers among concurrent threads
 Limited shared memory among concurrent blocks

Register Pressure

Parallel Programming – NTHU LSA Lab 20

Local Memory
 Name refers to memory where registers and other

thread-data is spilled
 Usually when one runs out of SM resources
 “Local” because each thread has its own private area

 Details:
 Not really a “memory” – bytes are stored in global

memory (DRAM)

 Differences from global memory:
 Addressing is resolved by the compiler
 Stores are cached in L1

Parallel Programming – NTHU LSA Lab 21

Example

 Variables i, j, k, a, b, c are called “local variables”.
 It is likely that variable i, j, k are stored in registers, and

variable a, b, c are stored in “local memory” (off-chip DRAM).
 Compiler decides which memory space to use.
 Registers aren’t indexable, so arrays have to be placed in local

memory.
 If not enough registers, local memory will be used.

 Only allowed static array!!  No int a[m];

__device__ void distance(int m, int n, int *V){
 int i, j, k;
 int a[10], b[10], c[10];
 ...
}

Parallel Programming – NTHU LSA Lab 22

Outline
 Thread execution
 Memory hierarchy
 Register & Local memory
 Shared memory
Global & Constant memory

 Occupancy

Parallel Programming – NTHU LSA Lab 23

Shared Memory
 Programmable cache!!

 Almost as fast as registers

 Scope: shared by all the threads in a block.
 The threads in the same block can communicate with each

other through the shared memory.
 Threads in different blocks can only communicate with each

other through global memory.

 Size: at most 48K per block
 On Fermi/Kepler GPU, shared memory and L1 cache use the

same memory hardware (64K). Programmers can decide the
ratio of shared memory and L1 cache:

 The ratio (shared:L1) can be (3:1) or (1:1) or (1:3).
Parallel Programming – NTHU LSA Lab 24

General Strategy
1. Load data from global memory to shared

memory
2. Process data in the shared memory
3. Write data back from shared memory to

global memory

Global memory

Shared memory

Blocks

Parallel Programming – NTHU LSA Lab 25

APSP Parallel Implementation Revisit
 Use n*n threads.
 Each updates the shortest path of one pair vertices
 Use global memory to store the matrix D.

Parallel Programming – NTHU LSA Lab 26

__global__ void FW_APSP(int k, int D[n][n]) {
 int i = threadIdx.x;
 int j = threadIdx.y;
 if (D[i][j]>D [i][k]+D[k][j])
 D[i][j]= D[i][k]+D[k][j];
}
int main() { ...
 dim3 threadsPerBlock(n, n);
 for (int k = 0; k<n, k++)
 FW_APSP<<<1, threadsPerBlock >>>(k, D);
}

6 global
memory
access

Using Shared Memory

Parallel Programming – NTHU LSA Lab 27

extern __shared__ int S[][];
__global__ void FW_APSP(int k, int D[n][n]) {
 int i = threadIdx.x;
 int j = threadIdx.y;
 S[i][j]=D[i][j]; // move data to shared memory
 __syncthreads();
 // do computation
 if (S[i][j]>S[i][k]+S[k][j])
 D[i][j]= S[i][k]+S[k][j];
}

ONLY 2
global mem

access

 This way of using shared memory is called dynamic
allocation of shared memory, whose size is specified in
the kernel launcher.

 FW_APSP<<<1,n*n, n*n*sizeof(int)>>>(…);
 The third parameter is the size of shared memory.

Limit of Dynamic Allocation

 If you have multiple extern declaration of shared:
extern __shared__ float As[];

extern __shared__ float Bs[];
this will lead to As pointing to the same address as Bs.

 Solution: keep As and Bs inside the 1D-array.
extern __shared__ float smem[];

 Need to do the memory management yourself
 When calling kernel, launch it with size of sAs+sBs, where
sAs and sBs are the size of As and Bs respectively.

 When indexing elements in As, use smem[0:sAs-1];
when indexing elements in Bs, use smem[sAs:sAs+sBs].

Parallel Programming – NTHU LSA Lab 28

Static Shared Memory Allocation

 If the size of shared memory is known in compilation
time, shared memory can be allocated statically.

__global__ void FW_APSP(int k, int D[][]){
 __shared__ int DS[10*10];
 ...
}

Parallel Programming – NTHU LSA Lab 29

Must know
n=10 at

compile time

Outline
 Thread execution
 Memory hierarchy
 Register & Local memory
 Shared memory
Global & Constant memory

Parallel Programming – NTHU LSA Lab 30

Global Memory in Kernel
 Through the kernel launcher arguments
Need to use cudaMalloc to allocate memory

and use cudaMemcpy to set their values.
 This method is what we used in previous

examples.

cudaMemcpy(void *dst, const void
*src, size_t count, enum
cudaMemcpyKind kind)

Parallel Programming – NTHU LSA Lab 31

Constant Memory
 Same usage and scope as the global memory

except
Read only
Using variable qualifier __constant__

Ex: __constant__ int data[32];

 Each SM has its own constant memory
 For Fermi, the constant memory on each SM is of

size 64K, and has a separated cache, of size 8K.

Parallel Programming – NTHU LSA Lab 32

CUDA Variables within a Kernel

 Scalar variables without qualifier reside in a register
 Compiler will spill to thread local memory

 Array variables without qualifier reside in thread-
local memory

Variable declaration Memory Scope Lifetime
 int var Register Thread Thread
 int array_var[10] Local Thread Thread
__shared__ int shared_var Shared Block Block
__device__ int global_var Global Grid App
__constant__ int constant_var Constant Grid App

Parallel Programming – NTHU LSA Lab 33

Memory Speed

 Scalar variables reside in fast, on-chip registers
 Shared variables reside in fast, on-chip memories
 Thread-local arrays & global variables reside in

uncached off-chip memory
 Constant variables reside in cached off-chip memory

Variable declaration Memory Speed
 int var Register 1x
 int array_var[10] Local 100x
__shared__ int shared_var Shared 1x
__device__ int global_var Global 100x
__constant__ int constant_var Constant 1x

Parallel Programming – NTHU LSA Lab 34

Memory Scale

 100Ks per-thread variables, R/W by 1 thread
 100s shared variables, each R/W by 100s of threads
 Global variable is R/W by 100Ks threads
 1 constant variable is readable by 100Ks threads

Variable declaration Total no. of
variables

Visible by no. of
threads

 int var 100,000 1
 int array_var[10] 100,000 1
__shared__ int shared_var 100 100
__device__ int global_var 1 100,000
__constant__ int constant_var 1 100,000

Parallel Programming – NTHU LSA Lab 35

Reference
 NVIDIA CUDA Library Documentation

 http://developer.download.nvidia.com/compute/cuda/4_
1/rel/toolkit/docs/online/index.html

 NVIDIA CUDA Warps and Occupancy
 http://on-demand.gputechconf.com/gtc-

express/2011/presentations/cuda_webinars_WarpsAndOc
cupancy.pdf

 Heterogeneous computing course slides from Prof.
Che-Rung Lee

Parallel Programming – NTHU LSA Lab 36

	GPU Architecture
	Outline
	Execution Model
	Thread Execution
	Warp
	Warp Scheduler
	Warp Divergence
	Avoid Diverging in a Warp
	Example: Divergent Iteration
	Iteration Divergence
	Unroll the for-loop
	#pragma unroll
	Atomic Operations
	Example: Histogram
	Example: Global Min/Max
	Outline
	GPU Memory Hierarchy
	Memory Access
	Register
	Register Pressure
	Local Memory
	Example
	Outline
	Shared Memory
	General Strategy
	APSP Parallel Implementation Revisit
	Using Shared Memory
	Limit of Dynamic Allocation
	Static Shared Memory Allocation
	Outline
	Global Memory in Kernel
	Constant Memory
	CUDA Variables within a Kernel
	Memory Speed
	Memory Scale
	Reference

