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Outline 
 Thread execution 
 Execution model 
Warp 
Warp Divergence 

 Memory hierarchy 
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Execution Model 

Threads are executed by scalar 
processor 
 
Thread blocks are executed on SM 
Several concurrent thread block 
can reside on one SM 
 
A kernel is launched as a grid of 
thread blocks 
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 CUDA threads are grouped into blocks 
 All threads of the same block are executed in an SM 
 SMs have shared memories, where threads within a 

block can communicate 
 The entire threads of a block must be executed 

completely before there is space to schedule another 
thread block 

 Hardware schedules thread blocks onto available 
SMs 
 No guarantee of order of execution 
 If an SM has more resources, the hardware can 

schedule more blocks 

Thread Execution 
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 Inside the SM, threads are launched in 
groups of 32, called warps 
 Warps share the control part (warp scheduler) 
 At any time, only one warp is executed per SM 
 Threads in a warp will be executing the same 

instruction (SIMD) 

 In other words … 
 Threads in a wrap execute physically in parallel 
 Warps and blocks execute logically in parallel 
 Kernel needs to sync threads within a block 

 For Fermi: 
 Maximum number of active blocks per SM is 8 
 Maximum number of active warps per SM is 48 
 Maximum number of active threads per SM is 

48*32=1,536 

Warp  
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Warp Scheduler 
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 SM hardware implements zero-
overhead Warp scheduling 
 Warps whose next instruction has its 

operands ready for consumption are eligible 
for execution 

 Wraps are switched when memory stalls 
 Eligible Warps are selected for execution on 

prioritized scheduling 
 All threads in a Warp execute the same 

instruction when selected 
warp 8 instruction 11 

SM multithreaded 
Warp scheduler 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

time 

warp 3 instruction 96 



 What if different threads in a warp need to do different things: 
 Including any flow control instruction (if, switch, do, for, while) 
 if(foo(threadIdx.x)){ 
     do_A(); 
 } else { 
     do_B(); 
 } 

 Different execution paths  
     within a warp are serialized  

 Predicated instructions which are  
    carried out only if logical flag is true 
 All threads compute the logical predicate and  
     two predicated instructions/statements 
 Potential large lost of performance 

 
 

Warp Divergence 

Inside a warp 
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Avoid Diverging in a Warp 
 Example with divergence: 

if (threadIdx.x > 2) {...} 

else {...} 
 Branch granularity < warp size 

 
 Example without divergence: 

if (threadIdx.x / WARP_SIZE > 2) {...} 

else {...} 

 Different warps can execute different code with no 
impact on performance  

 Branch granularity is a whole multiple of warp size 
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Example: Divergent Iteration 

__global__ void per_thread_sum 
(int *indices, float *data, float *sums){ 
   ... 
   // number of loop iterations is  
   // data dependent 
   int i = threadIdx.x 
   for(int j=indices[i];j<indices[i+1]; j++){ 
      sum += data[j]; 
   } 
   sums[i] = sum; 
} 
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Iteration Divergence 
 A single thread can drag a whole warp with it 

for a long time 
 Know your data patterns 
 If data is unpredictable, try to flatten peaks by 

letting threads work on multiple data items 
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Unroll the for-loop 
 Unroll the statements can reduce the branches 

and increase the pipeline 
 Example:  

for (i=0;i<n;i++) { 
 a = a + i; 
} 
 Unrolled 3 times 
for (i=0;i<n;i+=3) { 
 a = a + i; 
 a = a + i+1; 
 a = a + i+2; 
} 
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#pragma unroll  

 The #pragma unroll directive can be used to 
control unrolling of any given loop. 

 must be placed immediately before the loop and 
only applies to that loop 

 Example:  
#pragma unroll 5  
for (int i = 0; i < n; ++i)  
 the loop will be unrolled 5 times.  
 The compiler will also insert code to ensure correctness 

 #pragma unroll 1 will prevent the compiler 
from ever unrolling a loop. 
 
 

12 Parallel Programming – NTHU LSA Lab 



Atomic Operations 
 Occasionally, an application may need threads to 

update a counter in shared or global memory 
 __shared__ int count; 

 …… 

 if (……) count++; 

 Synchronization problem: if two (or more) threads 
execute this statement at the same time 

 Solution: use atomic instructions supported by GPU 
 addition / subtraction 
max / min 
 increment / decrement 
 compare-and-swap 
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Example: Histogram 

/* Determine frequency of colors in a picture 
colors have already been converted into ints. Each 
thread looks at one pixel and increments a counter 
atomically*/ 

 

__global__ void hist(int* color, int* bin){ 

   int i = threadIdx.x + blockDim.x *  

                         blockIdx.x; 

   int c = colors[i]; 

   atomicAdd(&bin[c], 1); 

} 

Parallel Programming – NTHU LSA Lab 14 



Example: Global Min/Max 
__global__ void global_max(int* values, 
int* gl_max){ 

   int i = threadIdx.x + blockDim.x *  

                         blockIdx.x; 

   int val = values[i]; 

   atomicMax(gl_max,val); 

} 

 

 Not very fast for data in shared memory 
 Only slightly slower for data in device memory 
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Outline 
 Thread execution 
 Memory hierarchy 
 Register & Local memory 
 Shared memory 
Global & Constant memory 
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 Registers 
 Read/write per-thread 
 Low latency & High BW 

 Shared memory 
 Read/write per-block 
 Similar to register performance 

 Global/Local memory (DRAM) 
 Global is per-grid & Local is per-thread 
 High latency & Low BW 
 Not cached 

 Constant memory 
 Read only per-grid 
 Cached 

GPU Memory Hierarchy 

(Local Memory) 
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Memory Access 

On chip 

Off chip 
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 A store writes a line to L1  
 If evicted, that line is written to L2  
 The line could also be evicted from L2 and written to DRAM (global mem.) 

 A load requests the line from L1  
 If a hit, operation is complete  
 If a miss, then requests the line from L2  

If a miss, then requests the line from DRAM (global memory) 
 Only GPU threads can access local memory addresses  

 



 Register consumes zero extra clock cycles per 
instruction, except 
 Register read-after-write dependencies (24 cycles) and  
 Register memory bank conflicts 

 
 Register spilling 

 Max number of register per threads is 63 
 Local memory is used if the register limit is met 
Array variables always are allocated in  
    local memory (DRAM) 
 Max amount of local memory per thread is 512K 

Register  
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 Too few threads 
 can’t hide pipeline / memory access latency 

 Too many threads 
 register pressure 
 Limited number of registers among concurrent threads 
 Limited shared memory among concurrent blocks 

Register Pressure 
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Local Memory 
 Name refers to memory where registers and other 

thread-data is spilled 
 Usually when one runs out of SM resources 
 “Local” because each thread has its own private area 

 Details: 
 Not really a “memory” – bytes are stored in global 

memory (DRAM) 

 Differences from global memory: 
 Addressing is resolved by the compiler 
 Stores are cached in L1 
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Example 
 
 
 
 

 Variables i, j, k, a, b, c are called “local variables”. 
 It is likely that variable i, j, k are stored in registers, and 

variable a, b, c are stored in “local memory” (off-chip DRAM). 
 Compiler decides which memory space to use. 
 Registers aren’t indexable, so arrays have to be placed in local 

memory. 
 If not enough registers, local memory will be used. 

 Only allowed static array!!  No int a[m]; 

__device__ void distance(int m, int n, int *V){ 
   int i, j, k; 
 int a[10], b[10], c[10]; 
 ... 
}  
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Outline 
 Thread execution 
 Memory hierarchy 
 Register & Local memory 
 Shared memory 
Global  & Constant memory 

 Occupancy 
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Shared Memory 
 Programmable cache!! 

 Almost as fast as registers 

 Scope: shared by all the threads in a block. 
 The threads in the same block can communicate with each 

other through the shared memory. 
 Threads in different blocks can only communicate with each 

other through global memory. 

 Size: at most 48K per block 
 On Fermi/Kepler GPU, shared memory and L1 cache use the 

same memory hardware (64K).  Programmers can decide the 
ratio of shared memory and L1 cache:  

 The ratio (shared:L1) can be (3:1) or (1:1) or (1:3). 
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General Strategy 
1. Load data from global memory to shared 

memory 
2. Process data in the shared memory 
3. Write data back from shared memory to 

global memory 

Global memory 

Shared memory 

Blocks 
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APSP Parallel Implementation Revisit 
 Use  n*n threads.   
 Each updates the shortest path of one pair vertices 
 Use global memory to store the matrix D. 
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__global__ void FW_APSP(int k, int D[n][n]) {  
     int i = threadIdx.x;  
     int j = threadIdx.y; 
     if (D[i][j]>D [i][k]+D[k][j]) 
   D[i][j]= D[i][k]+D[k][j]; 
}  
int main() { ...  
    dim3 threadsPerBlock(n, n);      
    for (int k = 0; k<n, k++)  
        FW_APSP<<<1, threadsPerBlock >>>(k, D);  
}  

6 global 
memory 
access 



Using Shared Memory 
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extern __shared__ int S[][]; 
__global__ void FW_APSP(int k, int D[n][n]) {  
    int i = threadIdx.x;  
  int j = threadIdx.y; 
    S[i][j]=D[i][j]; // move data to shared memory 
    __syncthreads(); 
    // do computation 
  if (S[i][j]>S[i][k]+S[k][j]) 
   D[i][j]= S[i][k]+S[k][j]; 
}  

ONLY 2  
global mem 

access 

 This way of using shared memory is called dynamic 
allocation of shared memory, whose size is specified in 
the kernel launcher. 

  FW_APSP<<<1,n*n, n*n*sizeof(int)>>>(…); 
 The third parameter is the size of shared memory. 



Limit of Dynamic Allocation 

 If you have multiple extern declaration of shared: 
extern __shared__ float As[]; 

extern __shared__ float Bs[]; 
this will lead to As pointing to the same address as Bs. 

 Solution: keep As and Bs inside the 1D-array. 
extern __shared__ float smem[]; 

 Need to do the memory management yourself 
 When calling kernel, launch it with size of sAs+sBs, where 
sAs and sBs are the size of As and Bs respectively. 

 When indexing elements in As, use smem[0:sAs-1]; 
when indexing elements in Bs, use smem[sAs:sAs+sBs]. 
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Static Shared Memory Allocation 

 If the size of shared memory is known in compilation 
time, shared memory can be allocated statically. 
 
 
 
 

__global__ void FW_APSP(int k, int D[][]){ 
    __shared__ int DS[10*10]; 
    ... 
}  
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Must know 
n=10 at 

compile time 



Outline 
 Thread execution 
 Memory hierarchy 
 Register & Local memory 
 Shared memory 
Global & Constant memory 
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Global Memory in Kernel 
 Through the kernel launcher arguments 
Need to use cudaMalloc to allocate memory 

and use cudaMemcpy to set their values. 
 This method is what we used in previous 

examples. 
 

cudaMemcpy( void *dst, const void 
*src, size_t count, enum 
cudaMemcpyKind kind) 
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Constant Memory 
 Same usage and scope as the global memory 

except 
Read only 
Using variable qualifier __constant__ 

Ex: __constant__ int data[32]; 

 Each SM has its own constant memory 
 For Fermi, the constant memory on each SM is of 

size 64K, and has a separated cache, of size 8K. 
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CUDA Variables within a Kernel 
 
 
 
 
 

 Scalar variables without qualifier reside in a register 
 Compiler will spill to thread local memory 

 Array variables without qualifier reside in thread-
local memory 

Variable declaration  Memory Scope Lifetime 
           int var Register Thread Thread  
           int array_var[10] Local Thread Thread 
__shared__ int shared_var Shared Block  Block 
__device__ int global_var Global Grid App 
__constant__ int constant_var Constant Grid App 
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Memory Speed 
 
 
 
 
 

 Scalar variables reside in fast, on-chip registers 
 Shared variables reside in fast, on-chip memories 
 Thread-local arrays & global variables reside in 

uncached off-chip memory 
 Constant variables reside in cached off-chip memory 

Variable declaration  Memory Speed 
           int var Register 1x 
           int array_var[10] Local 100x 
__shared__ int shared_var Shared 1x 
__device__ int global_var Global 100x 
__constant__ int constant_var Constant 1x 

Parallel Programming – NTHU LSA Lab 34 



Memory Scale 
 
 
 
 

 
 

 
 100Ks per-thread variables, R/W by 1 thread 
 100s shared variables, each R/W by 100s of threads 
 Global variable is R/W by 100Ks threads 
 1  constant variable is readable by 100Ks threads 

Variable declaration  Total no. of 
variables 

Visible by no. of 
threads 

           int var 100,000 1 
           int array_var[10] 100,000 1 
__shared__ int shared_var 100 100 
__device__ int global_var 1 100,000 
__constant__ int constant_var 1 100,000 
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Reference 
 NVIDIA CUDA Library Documentation 

 http://developer.download.nvidia.com/compute/cuda/4_
1/rel/toolkit/docs/online/index.html 

 NVIDIA CUDA Warps and Occupancy 
 http://on-demand.gputechconf.com/gtc-

express/2011/presentations/cuda_webinars_WarpsAndOc
cupancy.pdf 

 Heterogeneous computing course slides from Prof. 
Che-Rung Lee 
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