Heterogeneous Computing & GPU Introduction

National Tsing-Hua University 2017, Summer Semester

.

Outline

- **■** Heterogeneous Computing
- GPU

The Death of CPU Scaling

- Increase of transistor density ≠ performance
 - The power consumption and clock speed improvements collapsed
 - Non-CPU bottleneck: memory and disk access speed

Trend of Parallel Computers

Single-Core Era

Enabled by:
Moore's Law
Voltage Scaling

Constraint by:
Power
Complexity

Assembly → C/C++→Java ...

Muti-Core Era

Enabled by: Moore's Law SMP Constraint by:
Power
Parallel SW
Scalability

Pthread → OpenMP ...

Heterogeneous Systems Era

Enabled by:
Abundant data
parallelism
Power efficient GPUs

Constraint by:
Programming
models
Comm. overhead

Shader → CUDA → OpenCL ...

Distributed System Era

Enabled by: Networking Constraint by:
Synchronization
Comm. overhead

MPI → MapReduce ...

Heterogeneous Computing

- Heterogeneous computing is an integrated system that consists of different types of (programmable) computing units.
 - DSP (digital signal processor)
 - FPGA (field-programmable gate array)
 - ASIC (application-specific integrated circuit)
 - GPU (graphics processing unit)
 - Co-processor (Intel Xeon Phi)
- A system can be a cell phone or a supercomputer

Shift of Computing Paradigm

GPU/Xeon Phi in Top 500 list (rank world's fastest Supercomputer)

- Jaguar was upgraded with GPU and renamed to Titan
 - Increase computation power by a factor of 10!!!
- 62 systems have accelerator(GPU) or co-processor (Phi)
- http://www.top500.org/lists/

2014 Rank	Name	Country	Manuf- acture	Accelerator	Cores	Rmax (TFlops/s)	
1	Tianhe-2	China	NUDT	Xeon Phi	3,120K	33.8K	
2	Titan	US	Cray	NVIDIA K20x	560K	17.6K	
3	Sequoia	US	IBM	N.A	1,572K	17.2K	
4	K computer	Japan	Fujitsu	N.A	705K	10.5K	
2012 Rank	Name	Country	Manuf- acture	Accelerator	Cores	Rmax (TFlops/s)	
6	Jaguar	US	Cray	N.A	298K	1.9K	

GPU Servers

Same HW architecture as commodity server, but memory copy between CPU and GPU becomes the

main bottleneck Disk **PCIe Bus CPU Main** Memory **GPU Video CPU Caches** Memory **CPU Registers GPU Caches GPU Constant GPU Temporary** Registers Registers GPU

NTHU LSA Lab

Heterogeneous System Architecture (HSA)

 Aim to provide a common system architecture for designing higher-level programming models for all

devices

- Unified coherent memory
 - Single virtual memory address space
 - Prevent memory copy

 A.k.a *Fusion:* a series of 64-bit microprocessors from AMD designed to act as a CPU and GPU on a single chip

➤ 2011: Llano, Brazos

2012: Trinity, Brazos-2

> 2013: Kabini, Temash

> 2014: Kaveri

Data Parallel Workloads

Serial and Task Parallel Workloads HSA Accelerated Processing Unit

1

Outline

- Heterogeneous Computing
- GPU

GPU (Graphic Processing Unit)

- A specialized chip designed for rapidly display and visualization
 - SIMD architecture
- Massively multithreaded manycore chips
 - > NVIDIA Tesla products have up to 128 scalar processors
 - > Over 12,000 concurrent threads
 - Over 470 GFOLPS sustained performance
- Two major vendors: NVIDIA and ATI (now AMD)

NTHU LSA Lab

GPGPU (General-Purpose Graphic Processing Unit)

- Expose the horse power of GPUs for general purpose computations
 - Exploit data parallelism for solving embarrassingly parallel tasks and numeric computations
 - Users across science & engineering disciplines are achieving 100x or better speedups on GPUs
- Programmable
 - ➤ Early GPGPU: using the libraries in computer graphics, such as OpenGL or DirectX, to perform the tasks other than the original hardware designed for.
 - ➤ Now CUDA and openCL provides an extension to C and C++ that enables parallel programming on GPUs

NTHU LSA Lab

- Consist of multiple stream multi-processors (SM)
- Memory hierarchic:

- Each SM is a vector machine
- Shared register files
 - Store local variables
- Programmable cache (shared memory)
 - > Shared with a normal L1 cache.
- Hardware scheduling for thread execution and hardware context switch

http://hothardware.com/Articles/NVIDIA-GF100-Architecture-and-Feature-Preview/

NVIDIA CUDA-Enabled GPUs Products

CUDA-Enabled NVIDIA GPUs								
Kepler Architecture (compute capabilities 3.x)	GeForce 600 Series	Quadro Kepler Series	Tesla K20 Tesla K10					
Fermi Architecture (compute capabilities 2.x)	GeForce 500 Series GeForce 400 Series	Quadro Fermi Series	Tesla 20 Series					
Tesla Architecture (compute capabilities 1.x)	GeForce 200 Series GeForce 9 Series GeForce 8 Series	Quadro FX Series Quadro Plex Series Quadro NVS Series	Tesla 10 Series					
	Entertainment	Professional Graphics	High Performance Computing					

NVIDIA Tesla Family HW Specification

	Tesla K40	Tesla K20X	Tesla K20	Tesla M2090
Stream Processors	2880	2688	2496	512
Core Clock	745MHz	732MHz	706MHz	650MHz
Memory Clock	6GHz GDDR5	5.2GHz GDDR5	5.2GHz GDDR5	3.7GHz GDDR5
Memory Bus Width	384-bit	384-bit	320-bit	384-bit
VRAM	12GB	6GB	5GB	6GB
Single Precision	4.29 TFLOPS	3.95 TFLOPS	3.52 TFLOPS	1.33 TFLOPS
Daubla Pracision	1.43 TFLOPS	1.31 TFLOPS	1.17 TFLOPS	655 GFLOPS
Double Precision	(1/3)	(1/3)	(1/3)	(1/2)
Transistor Count	7.1B	7.1B	7.1B	3B
TDP	235W	235W	225W	250W
Cooling	Active/Passive	Passive	Active/Passive	N/A
Manufacturing Process	TSMC 28nm	TSMC 28nm	TSMC 28nm	TSMC 40nm
Architecture	Kepler	Kepler	Kepler	Fermi
Launch Price	\$5499?	~\$3799	~\$3299	N/A

http://www.anandtech.com/show/7521/nvidia-launches-tesla-k40

NVIDIA GPU Architecture Roadmap

GPU Compute Capability

Computing/Programming features & spec

Tesla Data Center Products						
GPU	Compute Capability					
Tesla K40	3.5					
Tesla K20	3.5					
Tesla K10	3.0					
Tesla M2050/M2070/M2075/M2090	2.0					
Tesla S1070	1.3					
Tesla M1060	1.3					
Tesla S870	1.0					

Feature support (unlisted features are supported for all compute capabilities)		Compute capability (version)							
		1.1	1.2	1.3	2.x	3.0	3.5	5.0	
Integer atomic functions operating on 32-bit words in global memory	No	Van							
atomicExch() operating on 32-bit floating point values in global memory	NO		Yes						
Integer atomic functions operating on 32-bit words in shared memory									
atomicExch() operating on 32-bit floating point values in shared memory	N	lo	Yes						
Integer atomic functions operating on 64-bit words in global memory									
Warp vote functions									

Technical specifications		Compute capability (version)								
		1.1	1.2	1.3	2.x	3.0	3.5	5.0		
Maximum dimensionality of grid of thread blocks		2				3				
Maximum x-, y-, or z-dimension of a grid of thread blocks		65535					2 ³¹ -1			
Maximum dimensionality of thread block		3								
Maximum x- or y-dimension of a block		512				1024				
Maximum z-dimension of a block		64								
Maximum number of threads per block		512				1024				
Warp size		32								

source: http://en.wikipedia.org/wiki/CUDA

CUDA SDK Device Query

deviceQuery.cpp

```
Device 0: "Tesla M2090"
 CUDA Driver Version / Runtime Version
                                                  5.0 / 5.0
 CUDA Capability Major/Minor version number:
                                                  2.0
 Total amount of global memory:
                                                  5375 MBytes (5636554752 bytes)
  (16) Multiprocessors x ( 32) CUDA Cores/MP:
                                                  512 CUDA Cores
 GPU Clock rate:
                                                  1301 MHz (1.30 GHz)
 Memory Clock rate:
                                                  1848 Mhz
 Memory Bus Width:
                                                  384-bit
 L2 Cache Size:
                                                  786432 bytes
 Max Texture Dimension Size (x,y,z)
                                                  1D=(65536), 2D=(65536,65535), 3D
 Max Layered Texture Size (dim) x layers
                                                  1D=(16384) \times 2048, 2D=(16384,163)
 Total amount of constant memory:
                                                  65536 bytes
 Total amount of shared memory per block:
                                                  49152 bytes
 Total number of registers available per block: 32768
                                                  32
 Warp size:
 Maximum number of threads per multiprocessor:
                                                  1536
 Maximum number of threads per block:
                                                  1024
 Maximum sizes of each dimension of a block:
                                                  1024 x 1024 x 64
 Maximum sizes of each dimension of a grid:
                                                  65535 x 65535 x 65535
```


Reference

- Cyril Zeller, NVIDIA Developer Technology slides
- Heterogamous computing course slides from Prof. Che-Rung Lee