
Parallel Computations
& Applications

National Tsing-Hua University

2017, Summer Semester

Outline

 Embarrassingly Computations

 Divide-And-Conquer Computations

 Pipelined Computations

 Synchronous Computations

Parallel Programming – NTHU LSA Lab 2

Outline

 Embarrassingly Computations

 Image Transformations

Mandelbrot Set

Monte Carlo Methods

 Divide-And-Conquer Computations

 Pipelined Computations

 Synchronous Computations

Parallel Programming – NTHU LSA Lab 3

What is Embarrassingly Parallel

 A computation that can be divided into a number of
completely independent tasks

Parallel Programming – NTHU LSA Lab

Input Data

Results

Processes

Collect results

Divide input to tasks

4

Example 1: Image Transformations

 Low-level image operations:

 Shifting: object shifted by ∆𝑥 in the 𝑥-dimension
and ∆𝑦 in the 𝑦-dimension:

 𝑥′ = 𝑥 + ∆𝑥, 𝑦′ = 𝑦 + ∆𝑦

 Scaling: object scaled by a factor of 𝑆𝑥 in the 𝑥-
direction and 𝑆𝑦 in the 𝑦-direction;

 𝑥′ = 𝑥𝑆𝑥, 𝑦′ = 𝑦𝑆𝑦

 Rotation: object rotated through the angle 𝜃
about the origin of the coordinate system:

 𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃

 𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃
Parallel Programming – NTHU LSA Lab 5

Image Region Partitioning

 Square region
partition

Parallel Programming – NTHU LSA Lab

 Row region
partition

 Column region
partition

map

process

map

process

map

process

6

Pseudo-code for Image Shift
 Partition region by ROW with width 10

//master process
for(i=0, row=0; i<48; i++, row+=10) // for each of 48 processes
 send(row, Pi); // send row no.

for(i=0; i<480; i++) for(j=0; j<640; j++) temp_map[i][j] = 0; // initialize temp

for(i=0; i<(480*640); i++) { // for each pixel
 recv(oldrow, oldcol, newrow, newcol, PANY); // accept new coordinates
 if !((newrow<0)||((newrow>=480)||(newcol<0)||((newcol>=640))
 temp_map[newrow][newcol] = map[oldrow][oldcol];
}

for(i=0; i<480; i++) for(j=0; j<640; j++) map[i][j] = temp_map[i][j]; // update map

// slave process
recv (row, Pmaster);
for (oldrow = row; oldrow < (oldrow+10); oldrow++) // for each row in the partition
 for (oldcol = 0; oldcol < 640; oldcol++) { // for each column in the row
 newrow = oldrow + delta_x; // shift along x-dimension
 newcol = oldcol + delta_y; // shift along y-dimension
 send(oldrow, oldcol, newrow, newcol, Pmaster); // send out new coordinates
 }

480

10 x 640 …
…

P47

640

Example 2: Mandelbrot Set
 The Mandelbrot Set is a set of complex numbers that are
 quasi-stable when computed by iterating the function:

𝑍0 = 𝐶, 𝑍𝑘+1 = 𝑍𝑘
2 + 𝐶

 C is some complex number: 𝑪 = 𝑎 + 𝑏𝒊

 𝒁𝒌+𝟏 is the (k+1)th iteration of the complex number

 If |Zk| ≤ 2 for ANY k  C belongs to Mandelbrot Set

Parallel Programming – NTHU LSA Lab

2 -2

-2i

2i 2+2i

2-i

𝑍𝑘 = 𝑎2 + 𝑏2

𝑍𝑘 = 22 + 22 = 8

𝑍𝑘 = 22 + (−1)2= 5

Once |Zk| > 2, it will increase forever!

|Zk|

Iteration

2

4

∞ 0

C =-1+0.25i, NOT part of the set

C = -1+0.75i, part of the set

8

Fractal
 What exact is Mandelbrot Set?

 It is a fractal: An object that display self-similarity at
various scale; Magnifying a fractal reveals small-scale
details similar to the large-scale characteristics

 After plotting the Mandelbrot Set
 determined by thousands of iteration:

 Add color to the points outside the set &
 zoom in at the center of the image:

2

-2
2i -2i

Parallel Programming – NTHU LSA Lab 10

Mandelbrot Set Program

 Compute 𝑍𝑘+1 = 𝑍𝑘
2 + 𝐶

 Let 𝐶 = 𝐶𝑟𝑒𝑎𝑙 + 𝐶𝑖𝑚𝑎𝑔𝑖 , 𝑍𝑘 = 𝑍𝑟𝑒𝑎𝑙 + 𝑍𝑖𝑚𝑎𝑔𝑖

 𝑍𝑘+1 = 𝑍𝑟𝑒𝑎𝑙
2 − 𝑍𝑖𝑚𝑎𝑔

2 + 2𝑍𝑟𝑒𝑎𝑙𝑍𝑖𝑚𝑎𝑔𝑖 + 𝐶𝑟𝑒𝑎𝑙 + 𝐶𝑖𝑚𝑎𝑔𝑖

𝑍𝑟𝑒𝑎𝑙_𝑛𝑒𝑥𝑡 = 𝑍𝑟𝑒𝑎𝑙
2 − 𝑍𝑖𝑚𝑎𝑔

2 + 𝐶𝑟𝑒𝑎𝑙

𝑍𝑖𝑚𝑎𝑔_𝑛𝑒𝑥𝑡 = 2𝑍𝑟𝑒𝑎𝑙𝑍𝑖𝑚𝑎𝑔 + 𝐶𝑖𝑚𝑎𝑔

 Represent image number in program

 C = 2 + 4i C.real = 2, C.imag = 4

Parallel Programming – NTHU LSA Lab

Struct complex {
 float real;
 float imag;
};

11

Sequential Mandelbrot Set Program
 Testing program:

 Giving a complex number
 Return the iteration number when |Zk| > 2
 Let the maximum iteration is 256

Parallel Programming – NTHU LSA Lab

int cal_pixel (complex c) {
 int count = 0; // number of iterations
 int max= 256; // maximum iteration is 256
 float temp, lengthsq;
 complex z; // initialize complex number z
 z.real = 0; z.imag = 0;
 do {
 temp = (z.real * z.real) – (z.imag * z.imag) + c.real; // compute next z.real
 z.imag = (2 * z.real * z.imag) + c.imag; // compute next z.imag
 z.real = temp;
 lengthsq = (z.real * z.real) + (z.imag * z.imag);
 count++; // update iteration counter
 } while ((lengthsq < 4.0) && (count < max));
 return count;
} 12

Sequential Mandelbrot Set Program

 Scaling Coordinate Display Program:

 Plot the Mandelbrot Set from the
 coordinate system

 Color indicate the iteration number
 black=256, white=0

 Points are apart with a fixed distance
 read_disk, imag_dist

Parallel Programming – NTHU LSA Lab

for (x=real_min; x < real_max; x += real_dist) {
 for (y=imag_min; y < imag_max; x += imag_dist) {
 c.real = x; c.img = y;
 color = cal_pixel (c);
 display(x, y, color);
 }
}

13

Parallelizing Mandelbrot Set Program
 Partition screen 640*480 by row using 48 processes

//master process
for(i=0, row=0; i<48; i++, row+=10) // for each process
 send(row, Pi); // send row no.

for(i=0; i<(480*640); i++) { // for each pixel point
 recv(&x, &y, &color, PANY); // receive coordinate/colors
 display(x, y, color); // display pixel
}

//slave process
recv (&row, Pmaster);
for (x=0; x < 640; x++) {
 for (y=row; y < (row+10); y++) {
 c.real = min_real + (x * scale_real);
 c.imag = min_imag + (y * scale_image);
 color = cal_pixel (c);
 send(x, y, &color, Pmaster);
 }
}

480

10 x 640 …
…

P47

640

Each process may

have different load!

Dynamic Task Assignment

 Work pool / Processor Farm
Useful when tasks require different execution time
Dynamic load balancing

Parallel Programming – NTHU LSA Lab

Work Pool

(xb, yb)

(xc, yc)

(xd, yd)

(xa, ya)

……………………...

1. Send task

2. Return result &

 request new task

3. Send termination

…

15

Coding for Work Pool Approach
//master process
count = 0; // # of active processes
row = 0; // row being sent
for (k=0; k<num_proc; k++) { // send initial row to each processes
 send(row, Pi , data_tag);
 count++;
 row++;
}
do {
 recv(&slave, &r, color, PANY , result_tag);
 count--;
 if (row < num_row) { // keep sending until no new task
 send(row, Pslave , data_tag); // send next row
 count++;
 row++;
 } else {
 send(row, Pslave , terminate_tag); // terminate
 }
 display(r, color); // display row
} while(count > 0);

Tag is needed to distinguish

between data and termination msg

Coding for Work Pool Approach

Parallel Programming – NTHU LSA Lab

//slave process P (i)

recv(&row, Pmaster , source_tag);
while (source_tag == data_tag) { // keep receiving new task
 c.imag = min_imag + (row * scale_image);
 for (x=0; x<640; x++) {
 c.real = min_real + (x * scale_real);
 color[x] = cal_pixel (c); // compute color of a single row
 }
 send(i, row, color, Pmaster , result_tag); // send process id and results
 recv(&row, Pmaster , source_tag);
}

17

Example 3: Monte Carlo Methods

 Monte Carlo methods: a class of computational
algorithms that rely on repeated random sampling
to compute their results

 Invented in 1940s by John von Neumann,

 Stanislaw Ulam and Nicholas Metropolis,

 while they were working on nuclear weapon

 (Manhattan Project)

 Especially useful for simulating systems

 with many coupled degrees of freedom,

 such as fluids, disordered material

Parallel Programming – NTHU LSA Lab 18

Monte Carlo Methods --- 𝜋 calculation

 How to compute 𝜋 ???

 Definition of 𝜋: the area of a circle with unit radius

 We know:
𝐀𝐫𝐞𝐚 𝐨𝐟 𝐜𝐢𝐫𝐜𝐥𝐞

𝐀𝐫𝐞𝐚 𝐨𝐟 𝐬𝐪𝐮𝐚𝐫𝐞
=

𝝅

𝟒

 Randomly choose points from
 the square

 Giving sufficient number of samples,
 the fraction of points within the circle
 will be 𝜋/4!!!

 E.g.: With 10,000 randomly sample points
 we expect 7854 points within the circle
 7854/10000 =𝜋/4 𝜋 = 7854/10000*4 = 3.1416

Parallel Programming – NTHU LSA Lab

Area = 𝝅 2

2

Total area = 4

𝑥2 + 𝑦2 > 1

19

Monte Carlo Methods --- Integral
 Monte Carlo Method can compute ANY definite integral!

 max and min values of the integral must be known
 Very inefficient….

 Method:
 Randomly choose point 𝑥, 𝑦 :

𝑥𝑚𝑎𝑥 ≤ 𝑥 ≤ 𝑥𝑚𝑖𝑛
𝑦𝑚𝑎𝑥 ≤ 𝑦 ≤ 𝑦𝑚𝑖𝑛

 Compute the area (integral)
 according to the ratio of points
 inside and outside the area
  just like the computation of 𝜋

 Given any point (x, y), outside means : 𝑦 > 𝑓(𝑥)

𝒇 𝒙

𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

𝐴𝑟𝑒𝑎 = 𝑓 𝑥 𝑑𝑥
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

Parallel Programming – NTHU LSA Lab 20

Outline

 Embarrassingly Computations

 Divide-And-Conquer Computations

Adding Numbers

 Bucket Sort

N-Body Simulation

 Pipelined Computations

 Synchronous Computations

21 Parallel Programming – NTHU LSA Lab

What is Divide & Conquer
 Recursively divide a problem into sub-problems that

are of the same form as the larger problem
Initial

Problem
divide

Final
Result

conquer

22

Example 1: Adding Numbers

 Add a sequence of numbers

int add (int* numbers) {
 if (len(numbers) <=2) {
 return numbers[1]+numbers[2];
 } else {
 divide (numbers, sub_num1, sub_num2);
 part_sum1 = add(sub_num1);
 part_sum2 = add(sub_num2);
 }
 return (part_sum1+part_sum2);
}

1,2,3,4

1,2 3,4

1 2 3 4

10

3 7

 Parallel Code:
Scatter the numbers
then reduce results

 Sequential Recursive Code:

23 Parallel Programming – NTHU LSA Lab

Example 2: Bucket Sort
 Algorithm

1. Range of numbers is divided into m equal regions
2. One bucket is assigned for each region
3. Place numbers to buckets based on the region
4. Use sequential sort for each bucket

 Only effective if number of items per bucket is similar!!
 Numbers should have a known interval ([max, min])
 Numbers better to be uniformly distributed

2,4,6,1,8,10,5,9,0,3,7,11

Unsorted numbers

24

Merge list
0~2 3~5 6~8 9~11

0,1,2 3,4,5 6,7,8 9,10,11

Parallel Programming – NTHU LSA Lab

Complexity Analysis

 Sequential:

1. Distribute numbers to bucket: O(n)

2. Sequential sort each bucket: (n/m)log(n/m) x m

 Overall: O(n log(n/m))

 Parallelize sorting: one process per bucket

1. Distribute numbers to bucket: O(n)

2. Sequential sort each bucket: (n/m)log(n/m)

 Overall: O(n + n/m log(n/m))

 A single process must scan through all numbers in step1

 25 Parallel Programming – NTHU LSA Lab

Further Parallelized Bucket Sort
 Parallelize partitioning and sorting:

 Partition numbers to m parts/processes
 Each process divides its numbers to small buckets
 Merge small buckets to large bucket
 Sequential sort each bucket

2,4,6,1,8,10,5,9,0,3,7,11 Unsorted numbers

2 4 6 1 8 10 0 5 9 3 7 11

2,4,6

P1

3,7,11

P4

5,9,0

P3

1,8,10

P2

Phase1:

Partition

0,1,2 3,4,5 6,7,8 9,10,11 Merge list
Phase2:

Sorting

0~2 3~5 6~8 9~11

26

Example 3: N-Body Problem
 Newtonian laws of physics

 The gravitational force between two
bodies of masses 𝑚𝑎 & 𝑚𝑏 :

𝐹 =
𝐺𝑚𝑎𝑚𝑏

𝑟2

 Subject to the force, acceleration occurs
𝐹 = 𝑚 × 𝑎

 Let the time interval be ∆𝑡 &
current velocity 𝑣𝑡, position 𝑥𝑡
 New velocity 𝑣𝑡+1 :

𝐹 = 𝑚
𝑣𝑡+1 − 𝑣𝑡

∆𝑡
⇒ 𝑣𝑡+1 = 𝑣𝑡 +

𝐹∆𝑡

𝑚

 New position 𝑥𝑡+1:
𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1∆𝑡 27

Three-Dimensional Space

 Considering 2 bodies at (𝑥𝑎, 𝑦𝑎, 𝑧𝑎)& 𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏

𝑟 = 𝑥𝑎 − 𝑥𝑏
2 + 𝑦𝑎 − 𝑦𝑏

2 + 𝑧𝑎 − 𝑧𝑏
2

 The forces, velocities and positions can be resolved
in the three direction independently

𝐹𝑥 =
𝐺𝑚𝑎𝑚𝑏

𝑟2
𝑥𝑏 − 𝑥𝑎

𝑟

𝐹𝑦 =
𝐺𝑚𝑎𝑚𝑏

𝑟2
(
𝑦𝑏 − 𝑦𝑎

𝑟
)

𝐹𝑧 =
𝐺𝑚𝑎𝑚𝑏

𝑟2
(
𝑧𝑏 − 𝑧𝑎

𝑟
)

28 Parallel Programming – NTHU LSA Lab

N-Body Sequential Code
 Assume all bodies have the same mass m

 Non-feasible as N increases due to O(𝑁2)complexity

for (t=0; t<T; t++) {
 for (i=0; i<N; i++) {
 F = Compute_Force(i); // compute force in O(N^2)
 v_new[i] = v[i] + F *dt / m; // compute new velocity
 x_new[i] = x[i] + v_new[i] * dt; // compute new position
 }
 for(i=0; i<N; i++){
 x[i] = x_new[i]; // update position
 v[i] = v_new[i]; // update velocity
 }
}

29 Parallel Programming – NTHU LSA Lab

Approximate Algorithms

 Reduce time complexity by approximating a
cluster of bodies as a single distant body

How to find those clusters of bodies?

r Distant cluster

of bodies

Center

of mass

30

m = m1 + m2

x = (x1*m1 + x2*m2) / m

y = (y1*m1 + y2*m2) / m

Parallel Programming – NTHU LSA Lab

Barnes-Hut Algorithm

 Step1: Recursively divide space by two in each dimensions
 Record the center mass and position of each internal node

31

Center mass

Parallel Programming – NTHU LSA Lab

Barnes-Hut Algorithm

 Step1: Recursively divide space by two in each dimensions
 Record the center mass and position of each internal node

32 Parallel Programming – NTHU LSA Lab

Barnes-Hut Algorithm

 Step1: Recursively divide space by two in each dimensions
 Record the center mass and position of each internal node

33 Parallel Programming – NTHU LSA Lab

Barnes-Hut Algorithm

 Step1: Recursively divide space by two in each dimensions
 Record the center mass and position of each internal node

34 Parallel Programming – NTHU LSA Lab

Barnes-Hut Algorithm

 Step2: Compute approximate forces on each object
1. traverse the nodes of the tree, starting from the root.
2. If the center-of-mass of an internal node is sufficiently far

from the body, approximate the internal node as a single body
 Far is determined by a parameter: θ=d/r

r: the distance between the body
 and the node’s center-of-mass

d: the width of the region

35

a

d = 10

r=4

Example: θ=0.5
d/r=2.5 > θ

Barnes-Hut Algorithm

 Step2: Compute approximate forces on each object
1. Traverse the nodes of the tree, starting from the root.
2. If the center-of-mass of an internal node is sufficiently far

from the body, approximate the internal node as a single body
 Far means d/r < θ (e.t. 0 < θ <1)

r: the distance between the body
 and the node’s center-of-mass

d: the width of the region

D C B A

x

36

A B

C D

x
d = 16

Example: θ=1
d/rA=16/10 > θ
d/rB=16/2 > θ
d/rC=16/15 > θ
d/rD=16/20 < θ

Barnes-Hut Algorithm

 Step2: Compute approximate forces on each object
3. If it is a leaf node, calculate the force and add to the object.
4. Otherwise, recursively compute the force from
 children of the internal node.

D C B A

C’ B’ A’ x

37
d = 8

Example: θ=1
d/rA’=8/7 > θ  A’ is a leaf node
d/rB'=8/15 < θ  B’ treated like a single node
d/rC'=8/20 < θ  C’ is a leaf node

x

A’

B’

C’

Barnes-Hut Algorithm
 θ controls the accuracy and approximation error of the

algorithm
 θ = 0  d/r ALWAYS larger than θ  same as brute force
 θ = 1  most likely only need to consider the object within the

same cluster/region

 If the tree is balanced, the complexity is O(nlogn)
 But in general , the tree could be very unbalanced ……..

 The tree must be re-built for each time interval

38 Parallel Programming – NTHU LSA Lab

Orthogonal Recursive Bisection Method

 Recursively evenly divide space with the same
number of bodies in each of the dimensions

 Divide along x dimension

39 Parallel Programming – NTHU LSA Lab

Orthogonal Recursive Bisection Method

 Recursively evenly divide space with the same
number of bodies in each of the dimensions

 Divide along y dimension

40 Parallel Programming – NTHU LSA Lab

Orthogonal Recursive Bisection Method

 Recursively evenly divide space with the same
number of bodies in each of the dimensions

 Divide along x dimension

41 Parallel Programming – NTHU LSA Lab

Orthogonal Recursive Bisection Method

 Recursively evenly divide space with the same
number of bodies in each of the dimensions

 Divide along y dimension
Balanced tree

42 Parallel Programming – NTHU LSA Lab

Orthogonal Recursive Bisection Method

 It is more balanced, but less accurate
 Objects close to each other may not in the same cluster

Divide along y dimension

Balanced tree

43 Parallel Programming – NTHU LSA Lab

Outline

 Embarrassingly Computations

 Divide-And-Conquer Computations

 Pipelined Computations

Adding Numbers

 Sorting Numbers

 Linear Equation Solver

 Synchronous Computations

Parallel Programming – NTHU LSA Lab 44

What is Pipelined Computations

 A problem is divided into a series of tasks

 Tasks have to be completed one after the other

 Each task will be executed by a separate process
or processor

Parallel Programming – NTHU LSA Lab

P0 P1 P2 P3

45

Types of Pipelined Computations

 Pipelined approach can provide increased
speed under three types of computations:

1. If more than one instance of the complete problem
is to be executed

2. If a single instance has a series of data items must
be processed, each requiring multiple operations

3. If information to start the next process can be
passed forward before the process has completed
all its internal operations

Parallel Programming – NTHU LSA Lab 46

(Alternative space-time diagram)

Type 1 Pipelined Computations

1. If more than one instance of the complete problem
is to be executed

 After the first (p-1) cycles, one problem instance is
completed in each pipeline cycle

 The number of instance should be >> the number of
processes Parallel Programming – NTHU LSA Lab 47

Type 2 Pipelined Computations

2. If a series of data items must be processed,
each requiring multiple operations

Parallel Programming – NTHU LSA Lab 48

Types 3 Pipelined Computations

3. Only one problem instance, but each process
can pass on information to the next process,
before it has completed

Parallel Programming – NTHU LSA Lab 49

Example1: Adding Numbers

 Compute sum of an array:

 for(i=0; i<n; i++) sum += A[i]

 Pipeline for an unfolded loop:

 sum += A[0], sum += A[1], sum += A[2], ……

Parallel Programming – NTHU LSA Lab

A

Sin Sout
sum

A[0] A[1]

A

Sin Sout

A[2]

A

Sin Sout

A[n]

A

Sin Sout
……

50

Example1: Adding Numbers

Parallel Programming – NTHU LSA Lab

 The basic code for Pi:

 For the first process, P0:

 For the last process, Pn-1:

recv(&sum, Pi-1);
sum += number;
send(&sum, Pi+1);

send(&sum, Pi+1);

recv(&sum, Pi-1);
sum += number;

// code for process Pi
if (Pi != P0) {
 recv(&sum, Pi-1);
 sum += number;
}
if (Pi != Pn) {
 send(&sum, Pi+1);
}

 SPMD Program:

51

Example2: Sorting Numbers

 Insertion Sort:

Parallel Programming – NTHU LSA Lab

5 2 1 3 4

5

5 2

5 2 1

1 4 3 2

1

5

5 3 2

52

Example2: Sorting Numbers

 Insertion Sort:
 Each process holds one number

 Compare & move the smaller
number to the right

recv(&number, Pi-1);
if (number > x) {
 send(&x, Pi+1);
 x= number;
} else {
 send(&number, Pi+1);
}

Example 3: Linear Equation Solver
 Special linear equations of “upper-triangular” form

 a’s and b’s are constants, x’s are unknown to be found

Parallel Programming – NTHU LSA Lab 54

𝒂𝒏−𝟏,𝟎 𝒂𝒏−𝟏,𝟏 𝒂𝒏−𝟏,𝟐 …… 𝒂𝒏−𝟏,𝒏−𝟏

𝒂𝒏−𝟐,𝟎 𝒂𝒏−𝟐,𝟏 …… 𝒂𝒏−𝟐,𝒏−𝟐 0 …
...

…
..

…
.. 0 0

𝒂𝟏,𝟎 𝒂𝟏,𝟏 0 0 0

𝒂𝟎,𝟎 0 0 0 0

=

𝒙𝟎

𝒙𝟏 …
...

𝒙𝒏−𝟐

𝒙𝒏−𝟏

𝒃𝒏−𝟏

𝒃𝒏−𝟐 …
...

𝒃𝟏

𝒃𝟎

𝒂𝒏−𝟏,𝟎𝒙𝟎 + 𝒂𝒏−𝟏,𝟏𝒙𝟏 + 𝒂𝒏−𝟏,𝟐𝒙𝟐 +⋯+ 𝒂𝒏−𝟏,𝒏−𝟏𝒙𝒏−𝟏 = 𝐛𝐧−𝟏
 . .
𝒂𝟐,𝟎𝒙𝟎 + 𝒂𝟐,𝟏𝒙𝟏 + 𝒂𝟐,𝟐𝒙𝟐 = 𝐛𝟐

𝒂𝟏,𝟎𝒙𝟎 + 𝒂𝟏,𝟏𝒙𝟏 = 𝐛𝟏

𝒂𝟎,𝟎𝒙𝟎 = 𝐛𝟎

Example 3: Linear Equation Solver
 Back Substitution

 𝑥0 is found from the last equation

𝑥0 =
𝑏0
𝑎0,0

 Value for 𝑥0 is substituted into the next equation

𝑥1 =
𝑏1 − 𝑎1,0𝑥0

𝑎1,1

 Values for 𝑥0, 𝑥1 are substituted into the next equation

𝑥2 =
𝑏2 − 𝑎2,0𝑥0 − 𝑎2,1𝑥1

𝑎2,2

 So on until all unknowns are found …

𝑥𝑖 =
𝑏𝑖 − 𝑎𝑖,𝑗𝑥𝑗

𝑖−1
𝑗=0

𝑎𝑖,𝑖

Parallel Programming – NTHU LSA Lab 55

Example 3: Linear Equation Solver

 First pipeline stage computes 𝑥0 and passes 𝑥0 onto
the second stage, which computes 𝑥1 from 𝑥0 and
passes both 𝑥0 and 𝑥1 onto the next stage, which
computes 𝑥2 from 𝑥0and 𝑥1, and so on

Parallel Programming – NTHU LSA Lab 56

Example 3: Linear Equation Solver

 Parallel Code

 Time complexity: 𝑂 𝑛2

Although later processes have more work for
both communications and computations

Parallel Programming – NTHU LSA Lab 57

// code for Pi
sum = 0;
for (j=0; j<i; j++) { // compute partial result
 recv(&x[j], Pi-1); // once data is available
 send(&x[j], Pi+1);
 sum += a[i][j]*x[j];
}
x[i] = (b[i] - sum) / a[i][j]; // send out final result to
send(&x[j], Pi+1); // next process

Outline

 Embarrassingly Computations

 Divide-And-Conquer Computations

 Pipelined Computations

 Synchronous Computations

 Prefix Sum

 System of Linear Equations

Parallel Programming – NTHU LSA Lab 58

Synchronous Computations

 Definition: all the processes synchronized at
regular points

 Barrier: Basic mechanism for synchronizing
processes

 Inserted at the point in each process where it must wait

 Message (token) is passed among processes for
synchronization

 Deadlock: Common problem occurs from
synchronization

 Two or multiple processes waiting for each other

Parallel Programming – NTHU LSA Lab 59

Barrier

 All processes can only continue from this
POINT when all the processes have reached it

Parallel Programming – NTHU LSA Lab 60

Counter Barrier Implementation
 A.k.a: Linear Barrier

 Centralized counter: count # of processes reaching the barrier

 Increase & check the counter for each barrier call

 Processes is locked by the barrier call until

 counter == # processes

61

Counter Barrier Implementation
 Counter-based barrier often have two phases

 Arrival phase: a process enters arrival phase and does not
leave this phase until all processes have arrived in this phase

 Departure phase: Processes are released after moving to the
departure phase

62

Slave processes

Barrier():

 send(Pmaster)

 recv(Pmaster) Barrier():

 send(Pmaster)

 recv(Pmaster)

Master

for(i=0;i<p;i++)

 recv(Pany)

for(i=0;i<p;i++)

 send(Pany)

Arrival

phase

Departure

phase

 Slave processes is blocked by recv()

 Master could be a bottleneck

Butterfly Barrier Implementation

 At stage i, each process passes a token to the
process with 2i distance away

Parallel Programming – NTHU LSA Lab 63

Butterfly Barrier Implementation

 At stage i, each process passes a token to the
process with 2i distance away

Parallel Programming – NTHU LSA Lab 64

Butterfly Barrier Implementation

 At stage i, each process passes a token to the
process with 2i distance away

Parallel Programming – NTHU LSA Lab 65

66

Deadlock Problem

 A set of blocked processes each holding some
resources and waiting to acquire a resource held by
another process in the set

 Example:

recv(P1)

send(P1)

P0

send(P0)

send(P2)

recv(P0)

recv(P2)

P1

recv(P1)

send(P1)

P2

recv(P1)

send(P1)

P0

recv(P0)

recv(P2)

send(P0)

send(P2)

P1

recv(P1)

send(P1)

P2

Parallel Programming – NTHU LSA Lab

Example 1: Prefix Sum

 Given a list of numbers 𝑥0, 𝑥1, … . 𝑥𝑛−1,
compute all partial summations
 𝑥0; 𝑥0 + 𝑥1; 𝑥0 + 𝑥1 + 𝑥2; …… . .

 Could also replace operator + with AND, OR, *, etc.

 Example:
 𝑥 = 1,2,3,4,5

 Sum = 1,3,6,10,15

 Sequential code: O(n2)

Parallel Programming – NTHU LSA Lab 67

//sequential code
for(i = 0; i < n; i++) {
 sum[i] = 0;
 for (j = 0; j <= i; j++)
 sum[i] = sum[i] + x[j];
}

Data Parallelism Solution

Parallel Programming – NTHU LSA Lab 68

Data Parallelism Code

 Sequential Code: O(n2), optimal: O(n)

 Parallel Code: O(log n)

Parallel Programming – NTHU LSA Lab 69

for (j = 0; j < log(n); j++) /* at each step */

 forall (i = 0; i < n; i++) /* add to accumulating sum */

 if (i >= 2j) x[i] = x[i] + x[i - 2j];

for (j = 0; j < log(n); j++) /* at each step */

 for (i = 2j; i < n; i++) /* add to accumulating sum */

 x[i] = x[i] + x[i - 2j]

Synchronous Parallelism

 Each iteration composed of several processes
that start together at beginning of iteration
and next iteration cannot begin until all
processes have finished previous iteration

 openMP

Parallel Programming – NTHU LSA Lab 70

 MPI
for (j=0; j<n; j++) { // each iteration

 forall (i=0; i<N; i++) { // each process

 body(i);

 }

}

for (j=0; j<n; j++) { // each iteration

 i = myrank;

 body(i);

 barrier(mygroup);

}

Example 2: System of Linear Equations

 System of linear equations

 Jacobi iteration algorithm:

 Convert ith iteration to 𝑥𝑖 =
1

𝑎𝑖,𝑖
[𝑏𝑖 − 𝑎𝑖,𝑗𝑖≠𝑗 𝑥𝑗]

 Initial guess with 𝑥𝑖 = 𝑏𝑖, and calculate new 𝑥𝑖 values

 Repeat until 𝑥𝑖
𝑡 − 𝑥𝑖

𝑡−1 < error tolerance

 Parallel Programming – NTHU LSA Lab 71

𝒂𝟎,𝟎 𝒂𝟎,𝟏 𝒂𝟎,𝟐 …… 𝒂𝟎,𝒏−𝟏

𝒂𝟏,𝟎 𝒂𝟏,𝟏 𝒂𝟏,𝟐 …… 𝒂𝟏,𝒏−𝟏 …
...

…
..

…
..

…
..

…
..

𝒂𝒏−𝟐,𝟎 𝒂𝒏−𝟐,𝟏 𝒂𝒏−𝟐,𝟐 …… 𝒂𝒏−𝟐,𝒏−𝟏

𝒂𝒏−𝟏,𝟎 𝒂𝒏−𝟏,𝟏 𝒂𝒏−𝟏,𝟐 …… 𝒂𝒏−𝟏,𝒏−𝟏

=

𝒙𝟎

𝒙𝟏 …
...

𝒙𝒏−𝟐

𝒙𝒏−𝟏

𝒃𝟎

𝒃𝟏 …
...

𝒃𝒏−𝟐

𝒃𝒏−𝟏

Jacobi iteration algorithm

Parallel Programming – NTHU LSA Lab 72

Jacobi iteration algorithm example

 Iter1: x0
1 = 2, 𝑥1

1 = 2, 𝑥2
1 = 2

  x0
2 = 2 −

2x1
1−𝑥2

1

−1
= 4, 𝑥1

2 = 2, 𝑥2
2 = 1

 𝑒0 = 2 − 4 = 2, 𝑒1 = 0, 𝑒2 = 1

 iIter2: x0
2 = 2 −

2x1
2−𝑥2

2

−1
= 5, 𝑥1

3 = −2, 𝑥2
3 = −1

 𝑒0 = 4 − 5 = 1, 𝑒1 = 4, 𝑒2 = 2

 Parallel Programming – NTHU LSA Lab 73

−𝑥0 + 2𝑥1 − 𝑥2 = 2
2𝑥0 + 𝑥1 − 2𝑥2 = 2
2𝑥0 − 𝑥1 + 2𝑥2 = 2

𝑥0 = 2 −

2𝑥1 − 𝑥2
−1

𝑥1 = 2 −
2𝑥0 − 2𝑥2

1

𝑥2 = 2 −
2𝑥0 − 𝑥1

2

𝑥𝑖 =
1

𝑎𝑖,𝑖
[𝑏𝑖 − 𝑎𝑖,𝑗

𝑖≠𝑗

𝑥𝑗]

Jacobi iteration algorithm
 Sequential Code

 a[][] and b[] holding constants in the equations

 x[] holding unknowns

 fixed number of iterations

Parallel Programming – NTHU LSA Lab 74

for (i = 0; i < n; i++) x[i] = b[i]; /*initialize unknowns*/
for (iteration = 0; iteration < limit; iteration++) {
 for (i = 0; i < n; i++) { /* for each unknown */
 sum = -a[i][i] * x[i];
 for (j = 0; j < n; j++) /* compute summation */
 sum = sum + a[i][j] * x[j];
 new_x[i] = (b[i] - sum) / a[i][i]; /*compute unknown*/
 }
 for (i = 0; i < n; i++) x[i] = new_x[i]; /*update to new values*/
}

𝑥𝑖 =
1

𝑎𝑖,𝑖
[𝑏𝑖 − 𝑎𝑖,𝑗

𝑖≠𝑗

𝑥𝑗]

Jacobi iteration algorithm
 Parallel Code

 Process i handles unknown x[i]

Parallel Programming – NTHU LSA Lab 75

x[i] = b[i]; /*initialize unknown*/
for (iteration = 0; iteration < limit; iteration++) {
 sum = -a[i][i] * x[i];
 for (j = 0; j < n; j++) /* compute summation */
 sum = sum + a[i][j] * x[j];
 new_x[i] = (b[i] - sum) / a[i][i]; /* compute unknown */
 allGather(&new_x[i]); /* gather & broadcast new value */
 barrier(); /* wait for all processes */
}

