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What is Embarrassingly Parallel 

 A computation that can be divided into a number of 
completely independent tasks 
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Input Data 

Results 

Processes 

Collect results 

Divide input to tasks 
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Example 1: Image Transformations 

 Low-level image operations: 

 Shifting: object shifted by ∆𝑥 in the 𝑥-dimension 
and ∆𝑦 in the 𝑦-dimension: 

       𝑥′ = 𝑥 + ∆𝑥,   𝑦′ = 𝑦 + ∆𝑦  

 Scaling: object scaled by a factor of 𝑆𝑥 in the 𝑥-
direction and 𝑆𝑦 in the 𝑦-direction; 

   𝑥′ = 𝑥𝑆𝑥,   𝑦′ = 𝑦𝑆𝑦  

 Rotation: object rotated through the angle 𝜃 
about the origin of the coordinate system: 

  𝑥′ =     𝑥 cos 𝜃 + 𝑦 sin 𝜃 

  𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃 
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Image Region Partitioning 

 Square region 
partition 
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 Row region 
partition 

 Column region 
partition 

map 

process 

map 

process 

map 

process 
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Pseudo-code for Image Shift 
 Partition region by ROW with width 10 

//master process 
for(i=0, row=0; i<48; i++, row+=10)   // for each of 48 processes 
        send(row, Pi);               // send row no. 

for(i=0; i<480; i++)  for(j=0; j<640; j++)  temp_map[i][j] = 0; // initialize temp 

for(i=0; i<(480*640); i++) {     // for each pixel 
        recv(oldrow, oldcol, newrow, newcol, PANY);   // accept new coordinates 
        if !((newrow<0)||((newrow>=480)||(newcol<0)||((newcol>=640)) 
 temp_map[newrow][newcol] = map[oldrow][oldcol]; 
} 

for(i=0; i<480; i++)  for(j=0; j<640; j++)  map[i][j] = temp_map[i][j];  // update map 

// slave process 
recv (row, Pmaster); 
for (oldrow = row; oldrow < (oldrow+10); oldrow++)         // for each row in the partition 
        for (oldcol = 0; oldcol < 640; oldcol++) {                // for each column in the row  
 newrow = oldrow + delta_x;                 // shift along x-dimension 
 newcol = oldcol + delta_y;                 // shift along y-dimension 
 send(oldrow, oldcol, newrow, newcol, Pmaster); // send out new coordinates 
        } 

480 

10 x 640 …
…
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Example 2: Mandelbrot Set 
 The Mandelbrot Set is a set of complex numbers  that are  
     quasi-stable when computed by iterating the function: 

𝑍0 = 𝐶, 𝑍𝑘+1 = 𝑍𝑘
2 + 𝐶 

 C is some complex number: 𝑪 = 𝑎 + 𝑏𝒊   

 𝒁𝒌+𝟏 is the (k+1)th iteration of the complex number 

 If |Zk| ≤ 2 for ANY k  C belongs to Mandelbrot Set 
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2 -2 

-2i 

2i 2+2i 

2-i 

𝑍𝑘 = 𝑎2 + 𝑏2 

𝑍𝑘 = 22 + 22 = 8 

𝑍𝑘 = 22 + (−1)2= 5 

Once |Zk| > 2, it will increase forever! 

|Zk| 

Iteration 

2 

4 

∞ 0 

C =-1+0.25i, NOT part of the set  

C = -1+0.75i, part of the set 
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Fractal 
 What exact is Mandelbrot Set? 

 It is a fractal: An object that display self-similarity at 
various scale; Magnifying a fractal reveals small-scale 
details similar to the large-scale characteristics 

 After plotting the Mandelbrot Set  
    determined by thousands of iteration: 

 Add color to the points outside the set & 
    zoom in at the center of the image: 

    

 

2 

-2 
2i -2i 
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Mandelbrot Set Program 

 Compute 𝑍𝑘+1 = 𝑍𝑘
2 + 𝐶 

 Let 𝐶 = 𝐶𝑟𝑒𝑎𝑙 + 𝐶𝑖𝑚𝑎𝑔𝑖 ,      𝑍𝑘 = 𝑍𝑟𝑒𝑎𝑙 + 𝑍𝑖𝑚𝑎𝑔𝑖 

 𝑍𝑘+1 = 𝑍𝑟𝑒𝑎𝑙
2 − 𝑍𝑖𝑚𝑎𝑔

2 + 2𝑍𝑟𝑒𝑎𝑙𝑍𝑖𝑚𝑎𝑔𝑖 + 𝐶𝑟𝑒𝑎𝑙 + 𝐶𝑖𝑚𝑎𝑔𝑖  

𝑍𝑟𝑒𝑎𝑙_𝑛𝑒𝑥𝑡 = 𝑍𝑟𝑒𝑎𝑙
2 − 𝑍𝑖𝑚𝑎𝑔

2 + 𝐶𝑟𝑒𝑎𝑙  

𝑍𝑖𝑚𝑎𝑔_𝑛𝑒𝑥𝑡 = 2𝑍𝑟𝑒𝑎𝑙𝑍𝑖𝑚𝑎𝑔 + 𝐶𝑖𝑚𝑎𝑔 

 Represent image number in program 

 C = 2 + 4i C.real = 2, C.imag = 4 

Parallel Programming – NTHU LSA Lab 

Struct complex { 
        float real; 
        float imag; 
}; 

11 



Sequential Mandelbrot Set Program 
 Testing program:  

 Giving a complex number 
 Return the iteration number when |Zk| > 2 
 Let the maximum iteration is 256 
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int cal_pixel (complex c) { 
    int count = 0;   // number of iterations 
    int max= 256;   // maximum iteration is 256 
    float temp, lengthsq; 
    complex z;   // initialize complex number z 
    z.real = 0; z.imag = 0; 
    do { 
        temp = (z.real * z.real) – (z.imag * z.imag) + c.real;   // compute next z.real 
        z.imag = (2 * z.real * z.imag) + c.imag;        // compute next z.imag 
        z.real = temp; 
        lengthsq = (z.real * z.real) + (z.imag * z.imag); 
        count++;     // update iteration counter 
    } while ((lengthsq < 4.0) && (count < max)); 
    return count; 
} 12 



Sequential Mandelbrot Set Program 

 Scaling Coordinate Display Program: 

 Plot the Mandelbrot Set from the  
    coordinate system 

 Color indicate the iteration number 
    black=256, white=0 

 Points are apart with a fixed distance 
    read_disk, imag_dist 
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for (x=real_min; x < real_max; x += real_dist) { 
    for (y=imag_min; y < imag_max; x += imag_dist) { 
 c.real = x; c.img = y; 
 color = cal_pixel (c); 
 display(x, y, color);  
    } 
} 
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Parallelizing Mandelbrot Set Program 
 Partition screen 640*480 by row using 48 processes 

//master process 
for(i=0, row=0; i<48; i++, row+=10)  // for each process 
        send(row, Pi);   // send row no. 

for(i=0; i<(480*640); i++) {   // for each pixel point 
        recv(&x, &y, &color, PANY);   // receive coordinate/colors 
        display(x, y, color);   // display pixel  
} 

//slave process 
recv (&row, Pmaster); 
for (x=0; x < 640; x++) { 
    for (y=row; y < (row+10); y++) { 
 c.real = min_real + (x * scale_real); 
 c.imag = min_imag + (y * scale_image); 
 color = cal_pixel (c); 
 send(x, y, &color, Pmaster);  
    } 
} 

480 

10 x 640 …
…
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640 

Each process may 

have different load! 



Dynamic Task Assignment 

 Work pool / Processor Farm 
Useful when tasks require different execution time 
Dynamic load balancing 
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Work Pool 

(xb, yb) 

(xc, yc) 

(xd, yd) 

(xa, ya) 

……………………... 

1. Send task 

2. Return result &    

   request new task 

3. Send termination 

…
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Coding for Work Pool Approach 
//master process 
count = 0;   // # of active processes 
row = 0;   // row being sent 
for (k=0; k<num_proc; k++) { // send initial row to each processes 
        send(row, Pi , data_tag);  
        count++; 
        row++; 
} 
do { 
        recv(&slave, &r, color, PANY , result_tag);  
        count--; 
        if (row < num_row) {             // keep sending until no new task  
 send(row, Pslave , data_tag);      // send next row 
  count++;  
  row++; 
        } else { 
 send(row, Pslave , terminate_tag);   // terminate 
        } 
        display(r, color);             // display row 
} while(count > 0); 

Tag is needed to distinguish 

between data and termination msg 



Coding for Work Pool Approach 
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//slave process P ( i ) 

recv(&row, Pmaster  , source_tag);  
while (source_tag == data_tag) { // keep receiving new task 
        c.imag = min_imag + (row * scale_image); 
        for (x=0; x<640; x++) { 
 c.real = min_real + (x * scale_real); 
 color[x] = cal_pixel (c);  // compute color of a single row 
        } 
        send(i, row, color, Pmaster , result_tag); // send process id and results 
        recv(&row, Pmaster  , source_tag);  
} 
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Example 3: Monte Carlo Methods 

 Monte Carlo methods: a class of computational 
algorithms that rely on repeated random sampling   
to compute their results 

 Invented in 1940s by John von Neumann,  

    Stanislaw Ulam and Nicholas Metropolis,  

    while they were working on nuclear weapon 

    (Manhattan Project) 

 Especially useful for simulating systems  

    with many coupled degrees of freedom,  

     such as fluids, disordered material 
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Monte Carlo Methods --- 𝜋 calculation 

 How to compute 𝜋 ??? 

 Definition of 𝜋: the area of a circle with unit radius 

 We know: 
𝐀𝐫𝐞𝐚 𝐨𝐟 𝐜𝐢𝐫𝐜𝐥𝐞

𝐀𝐫𝐞𝐚 𝐨𝐟 𝐬𝐪𝐮𝐚𝐫𝐞
=

𝝅

𝟒
 

 Randomly choose points from 
     the square 

 Giving sufficient number of samples,  
    the fraction of points within the circle  
    will be 𝜋/4!!! 

 E.g.: With 10,000 randomly sample points 
     we expect 7854 points within the circle  
    7854/10000 =𝜋/4 𝜋 = 7854/10000*4 = 3.1416 
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Area = 𝝅 2 

2 

Total area = 4 

𝑥2 + 𝑦2 > 1 
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Monte Carlo Methods --- Integral 
 Monte Carlo Method can compute ANY definite integral! 

 max and min values of the integral must be known 
 Very inefficient…. 

 Method: 
 Randomly choose point 𝑥, 𝑦 :  

𝑥𝑚𝑎𝑥 ≤ 𝑥 ≤ 𝑥𝑚𝑖𝑛 
𝑦𝑚𝑎𝑥 ≤ 𝑦 ≤ 𝑦𝑚𝑖𝑛 

 Compute the area (integral)  
    according to the ratio of points  
    inside and outside the area  
     just like the computation of 𝜋  

 Given any point (x, y), outside means : 𝑦 > 𝑓(𝑥) 

 

𝒇 𝒙  

𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥 

𝑦𝑚𝑎𝑥 

𝑦𝑚𝑖𝑛 

𝐴𝑟𝑒𝑎 =  𝑓 𝑥 𝑑𝑥
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛
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Outline 

 Embarrassingly Computations 

 Divide-And-Conquer Computations 

Adding Numbers 

 Bucket Sort 

N-Body Simulation 

 Pipelined Computations 

 Synchronous Computations 
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What is Divide & Conquer 
 Recursively divide a problem into sub-problems that 

are of the same form as the larger problem 
Initial 

Problem 
divide 

Final 
Result 

conquer 
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Example 1: Adding Numbers 

 Add a sequence of numbers 

int add (int* numbers) { 
  if (len(numbers) <=2) { 
        return numbers[1]+numbers[2]; 
   } else { 
       divide (numbers, sub_num1, sub_num2); 
       part_sum1 = add(sub_num1); 
       part_sum2 = add(sub_num2); 
  } 
  return (part_sum1+part_sum2); 
} 

1,2,3,4 

1,2 3,4 

1 2 3 4 

10 

3 7 

 Parallel Code: 
Scatter the numbers 
then reduce results 

 

 Sequential Recursive Code: 
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Example 2: Bucket Sort 
 Algorithm 

1. Range of numbers is divided into m equal regions 
2. One bucket is assigned for each region 
3. Place numbers to buckets based on the region 
4. Use sequential sort for each bucket 

 
 
 
 

 
 

 Only effective if number of items per bucket is similar!! 
 Numbers should have a known interval ([max, min]) 
 Numbers better to be uniformly distributed 

2,4,6,1,8,10,5,9,0,3,7,11 

Unsorted numbers 

24 

Merge list 
0~2 3~5 6~8 9~11 

0,1,2 3,4,5 6,7,8 9,10,11 
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Complexity Analysis 

 Sequential: 

1. Distribute numbers to bucket: O(n) 

2. Sequential sort each bucket: (n/m)log(n/m) x m 

 Overall: O(n log(n/m)) 

 

 Parallelize sorting: one process per bucket 

1. Distribute numbers to bucket: O(n) 

2. Sequential sort each bucket: (n/m)log(n/m)  

 Overall: O(n + n/m log(n/m)) 

 

 A single process must scan through all numbers in step1 
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Further Parallelized Bucket Sort 
 Parallelize partitioning and sorting: 

 Partition numbers to m parts/processes 
 Each process divides its numbers to small buckets 
 Merge small buckets to large bucket 
 Sequential sort each bucket 

2,4,6,1,8,10,5,9,0,3,7,11 Unsorted numbers 

2 4 6 1 8 10 0 5 9 3 7 11 

2,4,6 

P1 

3,7,11 

P4 

5,9,0 

P3 

1,8,10 

P2 

Phase1: 

Partition 

0,1,2 3,4,5 6,7,8 9,10,11 Merge list 
Phase2: 

Sorting 

0~2 3~5 6~8 9~11 
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Example 3: N-Body Problem 
 Newtonian laws of physics 

 The gravitational force between two 
bodies of masses 𝑚𝑎 & 𝑚𝑏 : 

𝐹 =
𝐺𝑚𝑎𝑚𝑏

𝑟2
 

 Subject to the force, acceleration occurs 
𝐹 = 𝑚 × 𝑎 

 Let the time interval be ∆𝑡 &        
current velocity 𝑣𝑡, position 𝑥𝑡  
 New velocity 𝑣𝑡+1 : 

𝐹 = 𝑚
𝑣𝑡+1 − 𝑣𝑡

∆𝑡
⇒ 𝑣𝑡+1 = 𝑣𝑡 +

𝐹∆𝑡

𝑚
 

 New position 𝑥𝑡+1: 
𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1∆𝑡 27 



Three-Dimensional Space 

 Considering 2 bodies at (𝑥𝑎, 𝑦𝑎, 𝑧𝑎)& 𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏  

𝑟 = 𝑥𝑎 − 𝑥𝑏
2 + 𝑦𝑎 − 𝑦𝑏

2 + 𝑧𝑎 − 𝑧𝑏
2 

 The forces, velocities and positions can be resolved 
in the three direction independently 

𝐹𝑥 =
𝐺𝑚𝑎𝑚𝑏

𝑟2
𝑥𝑏 − 𝑥𝑎

𝑟
 

𝐹𝑦 =
𝐺𝑚𝑎𝑚𝑏

𝑟2
(
𝑦𝑏 − 𝑦𝑎

𝑟
) 

𝐹𝑧 =
𝐺𝑚𝑎𝑚𝑏

𝑟2
(
𝑧𝑏 − 𝑧𝑎

𝑟
) 
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N-Body Sequential Code 
 Assume all bodies have the same mass m 

 

 

 

 

 

 

 

 

 Non-feasible as N increases due to O(𝑁2)complexity 

for (t=0; t<T; t++) { 
      for (i=0; i<N; i++) { 
 F = Compute_Force(i); // compute force in O(N^2) 
 v_new[i] = v[i] + F *dt / m; // compute new velocity 
 x_new[i] = x[i] + v_new[i] * dt;  // compute new position 
      } 
      for(i=0; i<N; i++){ 
       x[i] = x_new[i];  // update position 
       v[i] = v_new[i];  // update velocity 
      } 
} 
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Approximate Algorithms 

 Reduce time complexity by approximating a 
cluster of bodies as a single distant body 

How to find those clusters of bodies? 

r Distant cluster 

of bodies 

Center 

of mass 

30 

m = m1 + m2 

x = (x1*m1 + x2*m2) / m 

y = (y1*m1 + y2*m2) / m  
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Barnes-Hut Algorithm 

 Step1: Recursively divide space by two in each dimensions 
 Record the center mass and position of each internal node 

31 

Center mass 
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Barnes-Hut Algorithm 

 Step1: Recursively divide space by two in each dimensions 
 Record the center mass and position of each internal node 
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Barnes-Hut Algorithm 

 Step1: Recursively divide space by two in each dimensions 
 Record the center mass and position of each internal node 
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Barnes-Hut Algorithm 

 Step1: Recursively divide space by two in each dimensions 
 Record the center mass and position of each internal node 
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Barnes-Hut Algorithm 

 Step2: Compute approximate forces on each object 
1. traverse the nodes of the tree, starting from the root. 
2. If the center-of-mass of an internal node is sufficiently far 

from the body, approximate the internal node as a single body 
 Far is determined by a parameter: θ=d/r 

r: the distance between the body  
       and the node’s center-of-mass 

d: the width of the region 
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a 

d = 10  

r=4 

Example: θ=0.5 
d/r=2.5 > θ 



Barnes-Hut Algorithm 

 Step2: Compute approximate forces on each object 
1. Traverse the nodes of the tree, starting from the root. 
2. If the center-of-mass of an internal node is sufficiently far 

from the body, approximate the internal node as a single body 
 Far means d/r < θ     (e.t. 0 < θ <1) 

r: the distance between the body  
       and the node’s center-of-mass 

d: the width of the region 
 

 

D C B A 

x 
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A B 

C D 

x 
d = 16  

Example: θ=1 
d/rA=16/10 > θ 
d/rB=16/2   > θ 
d/rC=16/15 > θ 
d/rD=16/20 < θ 



Barnes-Hut Algorithm 

 Step2: Compute approximate forces on each object 
3. If it is a leaf node, calculate the force and add to the object.  
4. Otherwise, recursively compute the force from  
        children of the internal node. 

 

 

D C B A 

C’ B’ A’ x 

37 
d = 8  

Example: θ=1 
d/rA’=8/7   > θ   A’ is a leaf node 
d/rB'=8/15 < θ   B’ treated like a single node 
d/rC'=8/20 < θ   C’ is a leaf node 

x 

A’ 

B’ 

C’ 



Barnes-Hut Algorithm 
 θ controls the accuracy and approximation error of the 

algorithm 
 θ = 0  d/r ALWAYS larger than θ  same as brute force 
 θ = 1  most likely  only need to consider the object within the 

same cluster/region 

 If the tree is balanced, the complexity is O(nlogn) 
 But in general , the tree could be very unbalanced …….. 

 The tree must be re-built for each time interval 
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Orthogonal Recursive Bisection Method 

 Recursively evenly divide space with the same 
number of bodies in each of the dimensions 

 Divide along x dimension 
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Orthogonal Recursive Bisection Method 

 Recursively evenly divide space with the same 
number of bodies in each of the dimensions 

 Divide along y dimension 
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Orthogonal Recursive Bisection Method 

 Recursively evenly divide space with the same 
number of bodies in each of the dimensions 

 Divide along x dimension 
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Orthogonal Recursive Bisection Method 

 Recursively evenly divide space with the same 
number of bodies in each of the dimensions 

 Divide along y dimension 
Balanced tree 
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Orthogonal Recursive Bisection Method 

 It is more balanced, but less accurate 
 Objects close to each other may not in the same cluster 

 
Divide along y dimension 

Balanced tree 
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Outline 

 Embarrassingly Computations 

 Divide-And-Conquer Computations 

 Pipelined Computations 

Adding Numbers 

 Sorting Numbers 

 Linear Equation Solver 

 Synchronous Computations 
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What is Pipelined Computations 

 A problem is divided into a series of tasks 

 Tasks have to be completed one after the other 

 Each task will be executed by a separate process 
or processor 
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P0 P1 P2 P3 
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Types of Pipelined Computations 

 Pipelined approach can provide increased 
speed under three types of computations: 

1. If more than one instance of the complete problem 
is to be executed 

2. If a single instance has a series of data items must 
be processed, each requiring multiple operations 

3. If information to start the next process can be 
passed forward before the process has completed 
all its internal operations 
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(Alternative space-time diagram) 

Type 1 Pipelined Computations 

1. If more than one instance of the complete problem 
is to be executed 
 
 
 
 
 

 

 After the first (p-1) cycles, one problem instance is 
completed in each pipeline cycle 

 The number of instance should be >> the number of 
processes Parallel Programming – NTHU LSA Lab 47 



Type 2 Pipelined Computations 

2. If a series of data items must be processed, 
each requiring multiple operations 
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Types 3 Pipelined Computations 

3. Only one problem instance, but each process 
can pass on information to the next process, 
before it has completed 
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Example1: Adding Numbers 

 Compute sum of an array: 

 for(i=0; i<n; i++) sum += A[i] 

 Pipeline for an unfolded loop: 

 sum += A[0], sum += A[1], sum += A[2], …… 
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A 

Sin Sout 
sum 

A[0] A[1] 

A 

Sin Sout 

A[2] 

A 

Sin Sout 

A[n] 

A 

Sin Sout 
…… 

50 



Example1: Adding Numbers 
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 The basic code for Pi: 

 

 

 For the first process, P0: 

 

 For the last process, Pn-1: 

recv(&sum, Pi-1); 
sum += number; 
send(&sum, Pi+1); 

send(&sum, Pi+1); 

recv(&sum, Pi-1); 
sum += number; 

// code for process Pi 
if (Pi != P0) { 
    recv(&sum, Pi-1); 
    sum += number; 
} 
if (Pi != Pn) { 
    send(&sum, Pi+1); 
} 

 SPMD Program: 
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Example2: Sorting Numbers 

 Insertion Sort: 
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5 2 1 3 4 

5 

5 2 

5 2 1 

1 4 3 2 

1 

5 

5 3 2 
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Example2: Sorting Numbers 

 Insertion Sort: 
 Each process holds one number 

 Compare & move the smaller 
number to the right 

recv(&number, Pi-1); 
if (number > x) { 
    send(&x, Pi+1); 
    x= number; 
} else { 
    send(&number, Pi+1); 
} 



Example 3: Linear Equation Solver 
 Special linear equations of “upper-triangular” form 

 a’s and b’s are constants, x’s are unknown to be found 
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𝒂𝒏−𝟏,𝟎 𝒂𝒏−𝟏,𝟏 𝒂𝒏−𝟏,𝟐 …… 𝒂𝒏−𝟏,𝒏−𝟏 

𝒂𝒏−𝟐,𝟎 𝒂𝒏−𝟐,𝟏 …… 𝒂𝒏−𝟐,𝒏−𝟐 0 …
... 

…
.. 

…
.. 0 0 

𝒂𝟏,𝟎 𝒂𝟏,𝟏 0 0 0 

𝒂𝟎,𝟎 0 0 0 0 

= 

𝒙𝟎 

𝒙𝟏 …
... 

𝒙𝒏−𝟐 

𝒙𝒏−𝟏 

𝒃𝒏−𝟏 

𝒃𝒏−𝟐 …
... 

𝒃𝟏 

𝒃𝟎 

𝒂𝒏−𝟏,𝟎𝒙𝟎 + 𝒂𝒏−𝟏,𝟏𝒙𝟏 + 𝒂𝒏−𝟏,𝟐𝒙𝟐 +⋯+ 𝒂𝒏−𝟏,𝒏−𝟏𝒙𝒏−𝟏 = 𝐛𝐧−𝟏 
 .  . 
𝒂𝟐,𝟎𝒙𝟎 + 𝒂𝟐,𝟏𝒙𝟏 + 𝒂𝟐,𝟐𝒙𝟐 = 𝐛𝟐 

𝒂𝟏,𝟎𝒙𝟎 + 𝒂𝟏,𝟏𝒙𝟏 = 𝐛𝟏 

𝒂𝟎,𝟎𝒙𝟎 = 𝐛𝟎 



Example 3: Linear Equation Solver 
 Back Substitution 

 𝑥0 is found from the last equation 

𝑥0 =
𝑏0
𝑎0,0

 

 Value for 𝑥0 is substituted into the next equation 

𝑥1 =
𝑏1 − 𝑎1,0𝑥0

𝑎1,1
 

 Values for 𝑥0, 𝑥1 are substituted into the next equation 

𝑥2 =
𝑏2 − 𝑎2,0𝑥0 − 𝑎2,1𝑥1

𝑎2,2
 

 So on until all unknowns are found  … 

𝑥𝑖 =
𝑏𝑖 − 𝑎𝑖,𝑗𝑥𝑗

𝑖−1
𝑗=0

𝑎𝑖,𝑖
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Example 3: Linear Equation Solver 

 First pipeline stage computes 𝑥0 and passes 𝑥0  onto 
the second stage, which computes 𝑥1  from 𝑥0 and 
passes both 𝑥0  and 𝑥1  onto the next stage, which 
computes 𝑥2  from 𝑥0and 𝑥1, and so on 
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Example 3: Linear Equation Solver 

 Parallel Code 

 

 

 

 

 

 Time complexity: 𝑂 𝑛2  

Although later processes have more work for 
both communications and computations 
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// code for Pi 
sum = 0; 
for (j=0; j<i; j++) {  // compute partial result 
      recv(&x[j], Pi-1); // once data is available 
      send(&x[j], Pi+1);  
      sum += a[i][j]*x[j];  
} 
x[i] = (b[i] - sum) / a[i][j];  // send out final result to 
send(&x[j], Pi+1);  // next process 



Outline 

 Embarrassingly Computations 

 Divide-And-Conquer Computations 

 Pipelined Computations 

 Synchronous Computations 

 Prefix Sum 

 System of Linear Equations 
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Synchronous Computations 

 Definition: all the processes synchronized at     
regular points 

 Barrier: Basic mechanism for synchronizing 
processes 

 Inserted at the point in each process where it must wait 

 Message (token) is passed among processes for 
synchronization 

 Deadlock: Common problem occurs from 
synchronization 

 Two or multiple processes waiting for each other 
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Barrier 

 All processes can only continue from this 
POINT when all the processes have reached it 
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Counter Barrier Implementation 
 A.k.a: Linear Barrier 

 Centralized counter: count # of processes reaching the barrier 

 Increase & check the counter for each barrier call 

 Processes is locked by the barrier call until  

    counter == # processes 
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Counter Barrier Implementation 
 Counter-based barrier often have two phases 

 Arrival phase: a process enters arrival phase and does not 
leave this phase until all processes have arrived in this phase 

 Departure phase: Processes are released after moving to the 
departure phase 

62 

Slave processes 

Barrier(): 

    send(Pmaster) 

    recv(Pmaster) Barrier(): 

    send(Pmaster) 

    recv(Pmaster) 

Master 

for(i=0;i<p;i++) 

    recv(Pany) 

 

for(i=0;i<p;i++) 

    send(Pany) 

Arrival 

phase 

Departure 

phase 

 Slave processes is blocked by recv() 

 Master could be a bottleneck 



Butterfly Barrier Implementation 

 At stage i, each process passes a token to the 
process with 2i distance away 
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Butterfly Barrier Implementation 

 At stage i, each process passes a token to the 
process with 2i distance away 
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Butterfly Barrier Implementation 

 At stage i, each process passes a token to the 
process with 2i distance away 
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Deadlock Problem 

 A set of blocked processes each holding some 
resources and waiting to acquire a resource held by 
another process in the set 

 Example: 
 

recv(P1) 

send(P1) 

P0 

send(P0) 

send(P2) 

recv(P0) 

recv(P2) 

P1 

recv(P1) 

send(P1) 

P2 

recv(P1) 

send(P1) 

P0 

recv(P0) 

recv(P2) 

send(P0) 

send(P2) 

P1 

recv(P1) 

send(P1) 

P2 
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Example 1: Prefix Sum 

 Given a list of numbers 𝑥0, 𝑥1, … . 𝑥𝑛−1,   
compute all partial summations 
 𝑥0; 𝑥0 + 𝑥1; 𝑥0 + 𝑥1 + 𝑥2; …… . . 

 Could also replace operator + with AND, OR, *, etc. 

 Example: 
 𝑥 = 1,2,3,4,5 

 Sum = 1,3,6,10,15 

 Sequential code: O(n2) 
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//sequential code 
for(i = 0; i < n; i++) { 
      sum[i] = 0; 
      for (j = 0; j <= i; j++) 
 sum[i] = sum[i] + x[j]; 
} 



Data Parallelism Solution 
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Data Parallelism Code 

 Sequential Code: O(n2), optimal: O(n) 

 

 

 

 Parallel Code: O(log n) 
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for (j = 0; j < log(n); j++)          /* at each step */ 

      forall (i = 0; i < n; i++)        /* add to accumulating sum */ 

 if (i >= 2j) x[i] = x[i] + x[i - 2j]; 

for (j = 0; j < log(n); j++)            /* at each step */ 

      for (i = 2j; i < n; i++)             /* add to accumulating sum */ 

 x[i] = x[i] + x[i - 2j] 



Synchronous Parallelism 

 Each iteration composed of several processes 
that start together at beginning of iteration 
and next iteration cannot begin until all 
processes have finished previous iteration 

 openMP 
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 MPI 
for (j=0; j<n; j++) {      // each iteration 

      forall (i=0; i<N; i++) { // each process 

 body(i); 

      } 

} 

for (j=0; j<n; j++) {      // each iteration 

    i = myrank; 

    body(i); 

    barrier(mygroup); 

} 

 



Example 2: System of Linear Equations 

 System of linear equations 

 

 

 

 
 Jacobi iteration algorithm: 

 Convert ith iteration to 𝑥𝑖 =
1

𝑎𝑖,𝑖
[𝑏𝑖 −  𝑎𝑖,𝑗𝑖≠𝑗 𝑥𝑗] 

 Initial guess with 𝑥𝑖 = 𝑏𝑖, and calculate new 𝑥𝑖 values 

 Repeat until 𝑥𝑖
𝑡 − 𝑥𝑖

𝑡−1 < error tolerance 
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𝒂𝟎,𝟎 𝒂𝟎,𝟏 𝒂𝟎,𝟐 …… 𝒂𝟎,𝒏−𝟏 

𝒂𝟏,𝟎 𝒂𝟏,𝟏 𝒂𝟏,𝟐 …… 𝒂𝟏,𝒏−𝟏 …
... 

…
.. 

…
.. 

…
.. 

…
.. 

𝒂𝒏−𝟐,𝟎 𝒂𝒏−𝟐,𝟏 𝒂𝒏−𝟐,𝟐 …… 𝒂𝒏−𝟐,𝒏−𝟏 

𝒂𝒏−𝟏,𝟎 𝒂𝒏−𝟏,𝟏 𝒂𝒏−𝟏,𝟐 …… 𝒂𝒏−𝟏,𝒏−𝟏 

= 

𝒙𝟎 

𝒙𝟏 …
... 

𝒙𝒏−𝟐 

𝒙𝒏−𝟏 

𝒃𝟎 

𝒃𝟏 …
... 

𝒃𝒏−𝟐 

𝒃𝒏−𝟏 



Jacobi iteration algorithm 
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Jacobi iteration algorithm example 

 Iter1:   x0
1 = 2,  𝑥1

1 = 2,  𝑥2
1 = 2 

  x0
2 = 2 −

2x1
1−𝑥2

1

−1
= 4,   𝑥1

2 = 2,   𝑥2
2 = 1 

 𝑒0 = 2 − 4 = 2,         𝑒1 = 0,       𝑒2 = 1 

 iIter2:  x0
2 = 2 −

2x1
2−𝑥2

2

−1
= 5,  𝑥1

3 = −2,  𝑥2
3 = −1 

 𝑒0 = 4 − 5 = 1,         𝑒1 = 4,       𝑒2 = 2 
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−𝑥0 + 2𝑥1 − 𝑥2 = 2
2𝑥0 + 𝑥1 − 2𝑥2 = 2
2𝑥0 − 𝑥1 + 2𝑥2 = 2

 
𝑥0 = 2 −

2𝑥1 − 𝑥2
−1

𝑥1 = 2 −
2𝑥0 − 2𝑥2

1

𝑥2 = 2 −
2𝑥0 − 𝑥1

2

 

𝑥𝑖 =
1

𝑎𝑖,𝑖
[𝑏𝑖 − 𝑎𝑖,𝑗

𝑖≠𝑗

𝑥𝑗] 



Jacobi iteration algorithm 
 Sequential Code 

 a[][] and b[] holding constants in the equations 

 x[] holding unknowns 

 fixed number of iterations 
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for (i = 0; i < n; i++)  x[i] = b[i];            /*initialize unknowns*/ 
for (iteration = 0; iteration < limit; iteration++) { 
      for (i = 0; i < n; i++) {                      /* for each unknown */ 
 sum = -a[i][i] * x[i]; 
 for (j = 0; j < n; j++)                  /* compute summation */ 
       sum = sum + a[i][j] * x[j]; 
 new_x[i] = (b[i] - sum) / a[i][i];  /*compute unknown*/ 
      } 
      for (i = 0; i < n; i++) x[i] = new_x[i];   /*update to new values*/ 
} 

𝑥𝑖 =
1

𝑎𝑖,𝑖
[𝑏𝑖 − 𝑎𝑖,𝑗

𝑖≠𝑗

𝑥𝑗] 



Jacobi iteration algorithm 
 Parallel Code 

 Process i handles unknown x[i] 
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x[i] = b[i]; /*initialize unknown*/ 
for (iteration = 0; iteration < limit; iteration++) { 
      sum = -a[i][i] * x[i]; 
      for (j = 0; j < n; j++) /* compute summation */ 
 sum = sum + a[i][j] * x[j]; 
      new_x[i] = (b[i] - sum) / a[i][i];  /* compute unknown */ 
      allGather(&new_x[i]); /* gather & broadcast new value */ 
      barrier();                                         /* wait for all processes */ 
} 


