Shared-Memory

Programming: OpenMP

National Tsing-Hua University
2017, Summer Semester

"
What’s OpenMP

OpenMP == Open specification for Multi-Processing

mAn API : multi-threaded, shared memory parallelism
mPortable: the APl is specified for C/C++ and Fortran

mFork-Join model: the master thread forks a specified
number of slave threads and divides task among them

mCompiler Directive Based: Compiler takes care of
generating code that forks/joins threads and divide
taSkS tO th reads Parallel Task | Parallel Task Il Parallel Task Ill

T - -

Master Thread

Parallel Task | Parallel Task Il Parallel Task Il
-~ - '
Master Thread -~ .

h .
» -
! .
- . : \ ; —_
& ~ ” -
- ~ Sy
- T i " T
~ - - -
~ , "
~ . \

: : ~

" A
Example

m Add two data arrays in parallel by specifying

compiler directives:
» Slave threads are forked and each thread works on
different iterations

#include <omp.h>
// Serial code
int A[10], B[10], C[10];

// Beginning of parallel section. Fork a team of threads.
#pragma omp parallel for num_threads(10)
{
for (int i=0; i<10; i++)

Ali] = B[i] + C[i];
1 /* All threads join master thread and terminate */

" A
OpenMP Directives

m C/C++ Format:

#pragma omp | directive-name [clause, ...] newline
Required. Valid OpenMP Optional. Clauses can Required.
directive: parallel, | be in any order, and
do, for repeated as necessary.
m Example:

> #pragma omp parallel default(shared) private(beta,pi)

directive-name clause clause
m General Rules:

> Case sensitive
> Only one directive-name may be specified per directive

> Each directive applies to at most one succeeding statement,

which must be a structured block
4

" A
OpenMP Outline

m Parallel Region Construct

> Parallel Directive

m Working-Sharing Construct
» DO/for Directive
» SECTIONS Directive
» SINGLE Directive

m Synchronization Construct
m Date Scope Attribute Clauses
m Run-Time Library Routines

" N
Parallel Region Constructs --- Parallel Directive

m A parallel region is a block of code executed by multiple
threads

B Overview:
> When PARALLEL is reached, a team of threads is created
> The parallel region code is duplicated and executed by all threads
> There is an implied barrier at the end of a parallel section.
> One thread terminates, all threads terminate

B Limitations:
> A parallel region must be a structured block that does not span
multiple routines or code files
> Itisillegal to branch (goto) into or out of a parallel region, but
you could call other functions within a parallel region ©

" A
Parallel Region --- How Many Threads

m The number of threads in a parallel region is
determined in order of following precedence:
> Evaluation of the IF clause
¢ If FALSE, it is executed serially by the master thread
+ E.g: #pragma omp parallel IF(para == true)
> Setting of the num_threads clause
+ E.g.: #pragma omp parallel num_threads(10)
> Use of the omp_set_num_threads() library function
+ Called BEFORE the parallel region
> Setting of the OMP_NUM_THREADS environment variable
+ Called BEFORE the parallel region
> By default - usually the number of CPUs on a node

" A
Nested Parallel Region

// A total of 6 “hello world!” is printed
#pragma omp parallel num_threads(2)

{

#pragma omp parallel num_threads(3)

printf(“hello world!”);

}

}

m check if nested parallel regions are enabled
> omp_get_nested ()

m To disable/enable nested parallel regions:
> omp_set_nested (bool)
> Setting of the OMP_NESTED environment variable

m If nested is not supported or enabled:

> Only one thread is created for the nested parallel region code
8

" A
OpenMP Outline

||
>

m Working-Sharing Construct
» DO/for Directive
» SECTIONS Directive
» SINGLE Directive

" A0
Work-Sharing Constructs

m Definition:

> A work-sharing construct divides the execution of the
enclosed code region among the threads that
encounter it

> Work-sharing constructs DO NOT launch new threads

> There is no implied barrier upon entry to a work-
sharing construct, however there is an implied
barrier at the end of a work sharing construct

10

" A
Type of Work-Sharing Constructs

DO / for - shares SECTIONS - breaks SINGLE - serializes
iterations of a loop work into separate, a section of code
across the team. discrete sections of by running with a
Represents a type of code. Each sectionis single thread.
"data parallelism". executed by a thread.

l masiter thread l master thread l master thread
| FORK
k] = [| e [
| JOIN

l master thread l master thread l master thread
m Notice:

> should be enclosed within a parallel region for parallelism
11

'_
DO / for Directive

m Purpose: indicate the iterations of the loop immediately
following it must be executed in parallel by the team of

threads

m Do/for Directive Specific Clauses:
> nowait: Do not synchronize threads at the end of the loop
> schedule: Describes how iterations are divided among threads
> ordered: Iterations must be executed as in a serial program
> collapse: Specifies how many loops in a nested loop should be
collapsed into one large iteration space and divided according

to the schedule clause
12

" J
DO / for Directive --- Schedule Clause

m STATIC
> Loop iterations are divided into chunks
> If chunk is not specified, the iterations are evenly (if possible)
divided contiguously among the threads
> Then statically assigned to threads

m DYNAMIC: When a thread finishes one chunk (default size: 1), it
is dynamically assigned another

m GUIDED: Similar to DYNAMIC except chunk size decreases over
time (better load balancing)

m RUNTIME: The scheduling decision is deferred until runtime by
the environment variable OMP_SCHEDULE

m AUTO: The scheduling decision is delegated to the compiler

and/or runtime system
13

" A
Scheduling Examples

m A for loop with 100 iterations and 4 threads:

> schedule(static, 10)
¢ ThreadO: Iter0-10, Iter40-50, Iter80-90
¢ ThreadO: Iter10-20, Iter50-60, Iter90-100
¢ ThreadO: Iter20-30, Iter60-70
¢ ThreadO: Iter30-40, Iter70-80

> schedule(dynamic, 10)
¢ ThreadO: lter0-10, Iter70-80, Iter80-90, I1ter90-100
¢ ThreadO: Iter10-20, Iter50-60
¢ ThreadO: Iter20-30, Iter60-70
¢ ThreadO: Iter30-40, Iter40-50

14

" A
Scheduling Examples

m A for loop with 100 iterations and 4 threads:

> schedule(guided, 10)
¢ ThreadO: Iter0-10, Iter40-50, Iter80-85
¢ ThreadO: Iter10-20, Iter50-60, Iter85-90
¢ ThreadO: Iter20-30, Iter60-70, Iter90-95
¢ ThreadO: Iter30-40, Iter70-80, Iter95-100

15

DO / for Directive --- Example

#tinclude <omp.h>
#define NUM_THREAD 2
#tdefine CHUNKSIZE 100
ttdefine N 1000
main () {
int a[N], b[N], c[N];
/* Some initializations */
for (int i=0; i < N; i++) a[i] = b[i] = i;
int chunk = CHUNKSIZE;
int thread = NUM_THREAD;

{

} /* end of parallel section */

Shared variables
among threads

Private variables
of each thread

#pragma omp for schedule(dynamic,chunk) nowait
for (int i=0; i < N; i++) c[i] = a[i] + b[i];

!

#pragma omp parallel num_thread(thread) shared(a,b,c) private(i)

16

DO / for Directive --- Order

#pragma omp parallel for
for (inti=0;i<10; i++)
printf("i=%d, thread = %d\n",
i, omp_get_thread_num());

#pragma omp parallel for order
for (inti=0; i< 3; i++)
printf("i=%d, thread = %d\n",

i, omp_get_thread_num());

i=2, thread =0
i=0, thread = 1
i=1, thread =2
i=3, thread = 1
i=4, thread =0
i=8, thread = 2
i=5, thread = 1
i=6, thread = 2
i=9, thread = 1
i=7, thread =1

i=0, thread =0
i=1, thread =1
i=2, thread = 2
i=3, thread =1
i=4, thread =0
i=5, thread = 2
i=6, thread = 1
i=7, thread = 2
i=8, thread = 1
i=9, thread = 1

17

DO / for Directive --- Collapse

#pragma omp parallel num_thread(6)
#pragma omp for schedule(dynamic)
for (inti=0;i<3;i++)
for (intj=0;j<3;j++)
printf("i=%d, j=%d, thread = %d\n",
i, j, omp_get_thread_num());

#pragma omp parallel num_thread(6)
#pragma omp for schedule(dynamic)
collapse(2)
for (inti=0;i<3;i++)
for (intj=0;j<3;j++)
printf("i=%d, j=%d, thread = %d\n",
i, j, omp_get_thread_num());

i=1, j=0, thread = 1
i=2, j=0, thread = 2
i=0, j=0, thread =0
i=1, j=1, thread = 1
i=2, j=1, thread = 2
i=0, j=1, thread =0
i=1, j=2, thread = 1
i=2, j=2, thread = 2
i=0, j=2, thread =0

i=0, j=0, thread = 0
i=0, j=2, thread = 1
i=1, j=0, thread = 2
i=2, j=0, thread = 4
i=0, j=1, thread =0
i=1, j=2, thread =3
i=2, j=2, thread =5
i=1, j=1, thread = 2
i=2, j=1, thread = 4

18

'—
SECTIONS Directive

A non-iterative work-sharing construct

It specifies that the enclosed section(s) of CODE are to be
divided among the threads in the team

Independent SECTION directives are nested within a
SECTIONS directive

Each SECTION is executed ONCE by ONE thread

The mapping between threads and sections is decided by the
library implementation

" A
SECTIONS Directive --- Example

int N =1000
int a[N], b[N], c[N], d[N];

#pragma omp parallel num_thread(2) shared(a,b,c,d) private(i)

{

##pragma omp sections [* specify sections*/
{ ##pragma omp section /* 15t section*/
{ for (int i=0; i < N; i++) c[i] = a[i] + b[i];
#ioragma omp section /* 2" section*/
{ for (int i=0; i < N; i++) d[i] = a[i] + b[i];
}

} /* end of section */
} /* end of parallel section */

20

" A
SINGLE Directive

The SINGLE directive specifies that the enclosed code is to be
executed by only one thread in the team.

May be useful when dealing with sections of code that are
not thread safe (such as 1/0)

Threads in the team that do not execute the SINGLE directive,
wait at the end of the enclosed code block, unless a nowait

clause is specified
Example:

int input;
#pragma omp parallel num_thread(10) shared(input)
{
// computing code that can be prcessed in parallel
#pragma omp single /* specify section
{
scanf("%d", &input);
} /* end of seralized 1/0 call */

printf(“input is %d”, input);
} /* end of parallel section */ 21

" A0
OpenMP Outline

m Synchronization Construct

22

" N

Synchronization Constructs

m For synchronization purpose among threads

m Synchronization Directives

> master: only executed by the master thread
¢ No implicit barrier at the end
¢ More efficient than SINGLE directive

> critical: must be executed by only one thread at a time
¢ Threads will be blocked until the critical section is clear

> barrier: blocked until all threads reach the call

> atomic: memory location must be updated atomically

¢ provide a mini-critical section
23

" J
LOCK OpenMP Routine

void omp _init_lock(omp lock t *lock)
> |Initializes a lock associated with the lock variable

void omp_destroy lock(omp_lock t *lock)

> Disassociates the given lock variable from any locks

void omp_set_lock(omp_lock t *lock)

> Force the thread to wait until the specified lock is available

void omp_unset_lock(omp lock t *lock)

> Releases the lock from the executing subroutine

int omp_test lock(omp lock t *lock)
> Attempts to set a lock, but does NOT block if unavailable

24

Example & Comparison

m Advantage of using critical over lock:
> no need to declare, initialize and destroy a lock
> you always have explicit control over where your

critical section ends
> Less overhead with
compiler assist

#include <omp.h>
main () {
int count=0;
#pragma omp parallel
#pragma omp critical
count++;

#include <omp.h>

main () {
int count=0;
omp_lock_t *lock;
omp_init_lock(lock)
#pragma omp parallel

omp_set_lock(lock);
count++;
omp_unset_lock(lock);

}

omp_destory_lock(lock)

" A
OpenMP Outline

m Date Scope Attribute Clauses

26

" A0
OpenMP Date Scope

m This is critical to understand the scope of each data

> OpenMP is based on shared memory programming model
> Most variables are shared by default

m Global shared variables:

> File scope variables, static

m Private non-shared variables:
> Loop index variables

> Stack variables in subroutines called from parallel regions

m Data scope can be explicitly defined by clauses...

» PRIVATE , SHARED, FIRSTPRIVATE, LASTPRIVATE
» DEFAULT, REDUCTION, COPYIN

27

" A
Date Scope Attribute Clauses
m PRIVATE (var_list):

> Declares variables in its list to be private to each thread;
variable value is NOT initialized & will not be maintained
outside the parallel region
m SHARED (var_list):
> Declares variables in its list to be shared among all threads

> By default, all variables in the work sharing region are
shared except the loop iteration counter.

m FIRSTPRIVATE (var_list):
> Same as PRIVATE clause, but the variable is INITIALIZED
according to the value of their original objects prior to
entry into the parallel region

m LASTPRIVATE (var_list)

> Same as PRIVATE clause, with a copy from the LAST loop

iteration or section to the original variable object
28

" I

Examples

m firstprivate (var_list)

m lastprivate (var_list)

" A
Date Scope Attribute Clauses

m DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)

> Allows the user to specify a default scope for ALL variables in
the parallel region

m COPYIN (var_list)

> Assigning the same variable value based on the instance from
the master thread

m COPYPRIVATE (var_list)

> Broadcast values acquired by a single thread directly to all
instances in the other thread
> Associated with the SINGLE directive

m REDUCTION (operator: var_list)
> A private copy for each list variable is created for each thread
> Performs a reduction on all variable instances
> Write the final result to the global shared copy 30

" A
Reduction Clause Example

#include <omp.h>

main () {
int i, n, chunk, a[100], b[100], result;
n = 10; chunk = 2; result = 0;
for (i=0; i < n; i++) a[i] = b[i] =1;

##pragma omp parallel for default(shared) private(i) \
schedule(static,chunk) reduction(+:result)
{

}

printf("Final result= %f\n",result);

for (i=0; i < n; i++) result = result + (a[i] * b[i]);

}

m Reduction operators:
>+’ *I &I |I A) &&I ||

31

" A
OpenMP Clause Summary

IF Vv

PRIVATE Vv Vv Vv Vv
SHARED \' \'

DEFAULT Vv

FIRSTPRIVATE \" \" Vv \"
LASTPRIVATE Vv \"

REDUCTION \" \' \"

COPYIN \"

COPYPRIVATE \"
SCHEDULE \"

ORDERED \"

NOWAIT \" \"

m Synchronization Directives DO NOT accept clauses

32

" A0
OpenMP Outline

m Run-Time Library Routines

33

" A
Run-Time Library Routines

m void omp_set num_threads(int num_threads)
> Sets the number of threads that will be used in the next parallel region

m intomp_get num_threads(void)
> Returns the number of threads currently executing for the parallel region

m int omp_get thread num(void)
> Returns the thread number of the thread, within the team, making this call
> The master thread of the team is thread O

m int omp_get thread limit (void)
> Returns the maximum number of OpenMP threads available to a program

m int omp_get num_procs(void)
> Returns the number of processors that are available to the program

m int omp_in_parallel(void)
> determine if the section of code which is executing is parallel or not

Many others are available for more complicated usage

34

" A
Reference

m Textbook:
> Parallel Computing Chap8

m openMP Tutorial
> https://computing.linl.gov/tutorials/openMP/

m openMP API
> http://gcc.gnu.org/onlinedocs/libgomp.pdf

35

	Shared-Memory Programming: OpenMP
	What’s OpenMP
	Example
	OpenMP Directives
	OpenMP Outline
	Parallel Region Constructs --- Parallel Directive
	Parallel Region --- How Many Threads
	Nested Parallel Region
	OpenMP Outline
	Work-Sharing Constructs
	Type of Work-Sharing Constructs
	DO / for Directive
	DO / for Directive --- Schedule Clause
	Scheduling Examples
	Scheduling Examples
	DO / for Directive --- Example
	DO / for Directive --- Order
	DO / for Directive --- Collapse
	SECTIONS Directive
	SECTIONS Directive --- Example
	SINGLE Directive
	OpenMP Outline
	Synchronization Constructs
	LOCK OpenMP Routine
	Example & Comparison
	OpenMP Outline
	OpenMP Date Scope
	Date Scope Attribute Clauses
	Examples
	Date Scope Attribute Clauses
	Reduction Clause Example
	OpenMP Clause Summary
	OpenMP Outline
	Run-Time Library Routines
	Reference

