
Shared-Memory
Programming: OpenMP

National Tsing-Hua University
2017, Summer Semester

What’s OpenMP
OpenMP == Open specification for Multi-Processing

An API : multi-threaded, shared memory parallelism
Portable: the API is specified for C/C++ and Fortran
Fork-Join model: the master thread forks a specified
number of slave threads and divides task among them
Compiler Directive Based: Compiler takes care of
generating code that forks/joins threads and divide
tasks to threads

2

Example
 Add two data arrays in parallel by specifying

compiler directives:
 Slave threads are forked and each thread works on

different iterations
#include <omp.h>
// Serial code
int A[10], B[10], C[10];

// Beginning of parallel section. Fork a team of threads.
#pragma omp parallel for num_threads(10)
{
for (int i=0; i<10; i++)
 A[i] = B[i] + C[i];
} /* All threads join master thread and terminate */

3

OpenMP Directives
 C/C++ Format:

 Example:
 #pragma omp parallel default(shared) private(beta,pi)

 General Rules:
 Case sensitive
 Only one directive-name may be specified per directive
 Each directive applies to at most one succeeding statement,

which must be a structured block

#pragma omp directive-name [clause, ...] newline
Required. Valid OpenMP

directive: parallel,
do, for

Optional. Clauses can
be in any order, and
repeated as necessary.

Required.

directive-name clause clause

4

OpenMP Outline
 Parallel Region Construct
 Parallel Directive

 Working-Sharing Construct
DO/for Directive
 SECTIONS Directive
 SINGLE Directive

 Synchronization Construct
 Date Scope Attribute Clauses
 Run-Time Library Routines

 5

Parallel Region Constructs --- Parallel Directive
 A parallel region is a block of code executed by multiple

threads

 Overview:
 When PARALLEL is reached, a team of threads is created
 The parallel region code is duplicated and executed by all threads
 There is an implied barrier at the end of a parallel section.
 One thread terminates, all threads terminate

 Limitations:
 A parallel region must be a structured block that does not span

multiple routines or code files
 It is illegal to branch (goto) into or out of a parallel region, but

you could call other functions within a parallel region

#pragma omp parallel [clause …...]
 if (scalar_expression)
 num_threads (integer-expression)
structured_block

6

Parallel Region --- How Many Threads
 The number of threads in a parallel region is

determined in order of following precedence:
 Evaluation of the IF clause

If FALSE, it is executed serially by the master thread
E.g: #pragma omp parallel IF(para == true)

 Setting of the num_threads clause
E.g.: #pragma omp parallel num_threads(10)

 Use of the omp_set_num_threads() library function
Called BEFORE the parallel region

 Setting of the OMP_NUM_THREADS environment variable
Called BEFORE the parallel region

 By default - usually the number of CPUs on a node

7

Nested Parallel Region

 check if nested parallel regions are enabled
 omp_get_nested ()

 To disable/enable nested parallel regions:
 omp_set_nested (bool)
 Setting of the OMP_NESTED environment variable

 If nested is not supported or enabled:
 Only one thread is created for the nested parallel region code

// A total of 6 “hello world!” is printed
#pragma omp parallel num_threads(2)
{
 #pragma omp parallel num_threads(3)
 {
 printf(“hello world!”);
 }
}

8

OpenMP Outline
 Parallel Region Construct
 Parallel Directive

 Working-Sharing Construct
DO/for Directive
 SECTIONS Directive
 SINGLE Directive

 Synchronization Construct
 Date Scope Attribute Clauses
 Run-Time Library Routines

 9

Work-Sharing Constructs

 Definition:
A work-sharing construct divides the execution of the

enclosed code region among the threads that
encounter it

Work-sharing constructs DO NOT launch new threads
 There is no implied barrier upon entry to a work-

sharing construct, however there is an implied
barrier at the end of a work sharing construct

10

Type of Work-Sharing Constructs

 Notice:
 should be enclosed within a parallel region for parallelism

DO / for - shares
iterations of a loop
across the team.
Represents a type of
"data parallelism".

SECTIONS - breaks
work into separate,
discrete sections of
code. Each section is
executed by a thread.

SINGLE - serializes
a section of code
by running with a
single thread.

11

DO / for Directive
 Purpose: indicate the iterations of the loop immediately

following it must be executed in parallel by the team of
threads

 Do/for Directive Specific Clauses:
 nowait: Do not synchronize threads at the end of the loop
 schedule: Describes how iterations are divided among threads
 ordered: Iterations must be executed as in a serial program
 collapse: Specifies how many loops in a nested loop should be

collapsed into one large iteration space and divided according
to the schedule clause

#pragma omp for [clause …...]
 schedule (type [,chunk])
 ordered
 nowait
 collapse (n)
for_loop

12

DO / for Directive --- Schedule Clause
 STATIC

 Loop iterations are divided into chunks
 If chunk is not specified, the iterations are evenly (if possible)

divided contiguously among the threads
 Then statically assigned to threads

 DYNAMIC: When a thread finishes one chunk (default size: 1), it
is dynamically assigned another

 GUIDED: Similar to DYNAMIC except chunk size decreases over
time (better load balancing)

 RUNTIME: The scheduling decision is deferred until runtime by
the environment variable OMP_SCHEDULE

 AUTO: The scheduling decision is delegated to the compiler
and/or runtime system

13

Scheduling Examples
 A for loop with 100 iterations and 4 threads:
 schedule(static, 10)

Thread0: Iter0-10, Iter40-50, Iter80-90
Thread0: Iter10-20, Iter50-60, Iter90-100
Thread0: Iter20-30, Iter60-70
Thread0: Iter30-40, Iter70-80

 schedule(dynamic, 10)
Thread0: Iter0-10, Iter70-80, Iter80-90, Iter90-100
Thread0: Iter10-20, Iter50-60
Thread0: Iter20-30, Iter60-70
Thread0: Iter30-40, Iter40-50

14

Scheduling Examples
 A for loop with 100 iterations and 4 threads:
 schedule(guided, 10)

Thread0: Iter0-10, Iter40-50, Iter80-85
Thread0: Iter10-20, Iter50-60, Iter85-90
Thread0: Iter20-30, Iter60-70, Iter90-95
Thread0: Iter30-40, Iter70-80, Iter95-100

15

DO / for Directive --- Example
#include <omp.h>
#define NUM_THREAD 2
#define CHUNKSIZE 100
#define N 1000
main () {
 int a[N], b[N], c[N];
 /* Some initializations */
 for (int i=0; i < N; i++) a[i] = b[i] = i;
 int chunk = CHUNKSIZE;
 int thread = NUM_THREAD;

 #pragma omp parallel num_thread(thread) shared(a,b,c) private(i)
 {
 #pragma omp for schedule(dynamic,chunk) nowait
 for (int i=0; i < N; i++) c[i] = a[i] + b[i];
 } /* end of parallel section */
}

Shared variables
among threads

Private variables
of each thread

16

DO / for Directive --- Order
#pragma omp parallel for
for (int i = 0; i < 10; i++)
 printf("i=%d, thread = %d\n",
 i, omp_get_thread_num());

i=2, thread = 0
i=0, thread = 1
i=1, thread = 2
i=3, thread = 1
i=4, thread = 0
i=8, thread = 2
i=5, thread = 1
i=6, thread = 2
i=9, thread = 1
i=7, thread = 1

#pragma omp parallel for order
for (int i = 0; i < 3; i++)
 printf("i=%d, thread = %d\n",
 i, omp_get_thread_num());

i=0, thread = 0
i=1, thread = 1
i=2, thread = 2
i=3, thread = 1
i=4, thread = 0
i=5, thread = 2
i=6, thread = 1
i=7, thread = 2
i=8, thread = 1
i=9, thread = 1

17

DO / for Directive --- Collapse
#pragma omp parallel num_thread(6)
#pragma omp for schedule(dynamic)
for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 printf("i=%d, j=%d, thread = %d\n",
 i, j, omp_get_thread_num());

#pragma omp parallel num_thread(6)
#pragma omp for schedule(dynamic)
 collapse(2)
for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 printf("i=%d, j=%d, thread = %d\n",
 i, j, omp_get_thread_num());
 i=1, j=0, thread = 1

i=2, j=0, thread = 2
i=0, j=0, thread = 0
i=1, j=1, thread = 1
i=2, j=1, thread = 2
i=0, j=1, thread = 0
i=1, j=2, thread = 1
i=2, j=2, thread = 2
i=0, j=2, thread = 0

i=0, j=0, thread = 0
i=0, j=2, thread = 1
i=1, j=0, thread = 2
i=2, j=0, thread = 4
i=0, j=1, thread = 0
i=1, j=2, thread = 3
i=2, j=2, thread = 5
i=1, j=1, thread = 2
i=2, j=1, thread = 4
 18

SECTIONS Directive
 A non-iterative work-sharing construct
 It specifies that the enclosed section(s) of CODE are to be

divided among the threads in the team
 Independent SECTION directives are nested within a

SECTIONS directive
 Each SECTION is executed ONCE by ONE thread
 The mapping between threads and sections is decided by the

library implementation
#pragma omp sections [clause …...]

{
 #pragma omp section
 structured_block

 #pragma omp section
 structured_block
} 19

SECTIONS Directive --- Example
int N = 1000
int a[N], b[N], c[N], d[N];

#pragma omp parallel num_thread(2) shared(a,b,c,d) private(i)
{
 #pragma omp sections /* specify sections*/
 {
 #pragma omp section /* 1st section*/
 {
 for (int i=0; i < N; i++) c[i] = a[i] + b[i];
 }
 #pragma omp section /* 2nd section*/
 {
 for (int i=0; i < N; i++) d[i] = a[i] + b[i];
 }
 } /* end of section */
} /* end of parallel section */ 20

SINGLE Directive
 The SINGLE directive specifies that the enclosed code is to be

executed by only one thread in the team.
 May be useful when dealing with sections of code that are

not thread safe (such as I/O)
 Threads in the team that do not execute the SINGLE directive,

wait at the end of the enclosed code block, unless a nowait
clause is specified

 Example:

int input;
#pragma omp parallel num_thread(10) shared(input)
{
 // computing code that can be prcessed in parallel
 #pragma omp single /* specify section
 {
 scanf("%d", &input);
 } /* end of seralized I/O call */

 printf(“input is %d”, input);
} /* end of parallel section */ 21

OpenMP Outline
 Parallel Region Construct
 Parallel Directive

 Working-Sharing Construct
DO/for Directive
 SECTIONS Directive
 SINGLE Directive

 Synchronization Construct
 Date Scope Attribute Clauses
 Run-Time Library Routines

 22

Synchronization Constructs
 For synchronization purpose among threads

 Synchronization Directives
master: only executed by the master thread

No implicit barrier at the end
More efficient than SINGLE directive

 critical: must be executed by only one thread at a time
Threads will be blocked until the critical section is clear

 barrier: blocked until all threads reach the call
 atomic: memory location must be updated atomically

provide a mini-critical section

#pragma omp [synchronization_directive] [clause …...]

structured_block

23

LOCK OpenMP Routine
 void omp_init_lock(omp_lock_t *lock)

 Initializes a lock associated with the lock variable

 void omp_destroy_lock(omp_lock_t *lock)
 Disassociates the given lock variable from any locks

 void omp_set_lock(omp_lock_t *lock)
 Force the thread to wait until the specified lock is available

 void omp_unset_lock(omp_lock_t *lock)
 Releases the lock from the executing subroutine

 int omp_test_lock(omp_lock_t *lock)
 Attempts to set a lock, but does NOT block if unavailable

24

Example & Comparison
 Advantage of using critical over lock:
 no need to declare, initialize and destroy a lock
 you always have explicit control over where your

critical section ends
 Less overhead with
 compiler assist

#include <omp.h>
main () {
 int count=0;
 #pragma omp parallel
 #pragma omp critical
 count++;
}

25

#include <omp.h>
main () {
 int count=0;
 omp_lock_t *lock;
 omp_init_lock(lock)
 #pragma omp parallel
 {
 omp_set_lock(lock);
 count++;
 omp_unset_lock(lock);
 }
 omp_destory_lock(lock)
}

OpenMP Outline
 Parallel Region Construct
 Parallel Directive

 Working-Sharing Construct
DO/for Directive
 SECTIONS Directive
 SINGLE Directive

 Synchronization Construct
 Date Scope Attribute Clauses
 Run-Time Library Routines

 26

OpenMP Date Scope
 This is critical to understand the scope of each data

 OpenMP is based on shared memory programming model
 Most variables are shared by default

 Global shared variables:
 File scope variables, static

 Private non-shared variables:
 Loop index variables
 Stack variables in subroutines called from parallel regions

 Data scope can be explicitly defined by clauses…
 PRIVATE , SHARED, FIRSTPRIVATE, LASTPRIVATE
 DEFAULT, REDUCTION, COPYIN

27

Date Scope Attribute Clauses
 PRIVATE (var_list):

 Declares variables in its list to be private to each thread;
variable value is NOT initialized & will not be maintained
outside the parallel region

 SHARED (var_list):
 Declares variables in its list to be shared among all threads
 By default, all variables in the work sharing region are

shared except the loop iteration counter.
 FIRSTPRIVATE (var_list):

 Same as PRIVATE clause, but the variable is INITIALIZED
according to the value of their original objects prior to
entry into the parallel region

 LASTPRIVATE (var_list)
 Same as PRIVATE clause, with a copy from the LAST loop

iteration or section to the original variable object
28

Examples
 firstprivate (var_list)

 lastprivate (var_list)

int var1 = 10;
#pragma omp parallel firstprivate (var1)
{
 printf(“var1:%d” var1);
}

int var1 = 10;
#pragma omp parallel lastprivate (var1) num_thread(10)
{
 int id = omp_get_thread_num();
 sleep(id);
 var1=id;
}
printf(“var1:%d”, var1);

29

Date Scope Attribute Clauses
 DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)

 Allows the user to specify a default scope for ALL variables in
the parallel region

 COPYIN (var_list)
 Assigning the same variable value based on the instance from

the master thread
 COPYPRIVATE (var_list)

 Broadcast values acquired by a single thread directly to all
instances in the other thread

 Associated with the SINGLE directive
 REDUCTION (operator: var_list)

 A private copy for each list variable is created for each thread
 Performs a reduction on all variable instances
 Write the final result to the global shared copy 30

Reduction Clause Example

 Reduction operators:
 +, *, &, |, ^, &&, ||

#include <omp.h>
main () {
 int i, n, chunk, a[100], b[100], result;
 n = 10; chunk = 2; result = 0;
 for (i=0; i < n; i++) a[i] = b[i] = I;

 #pragma omp parallel for default(shared) private(i) \
 schedule(static,chunk) reduction(+:result)
 {
 for (i=0; i < n; i++) result = result + (a[i] * b[i]);
 }
 printf("Final result= %f\n",result);
}

31

OpenMP Clause Summary
Clause Directive

PARALLEL DO/for SECTIONS SINGLE
IF V
PRIVATE V V V V
SHARED V V
DEFAULT V
FIRSTPRIVATE V V V V
LASTPRIVATE V V
REDUCTION V V V
COPYIN V
COPYPRIVATE V
SCHEDULE V
ORDERED V
NOWAIT V V

 Synchronization Directives DO NOT accept clauses
32

OpenMP Outline
 Parallel Region Construct
 Parallel Directive

 Working-Sharing Construct
DO/for Directive
 SECTIONS Directive
 SINGLE Directive

 Synchronization Construct
 Date Scope Attribute Clauses
 Run-Time Library Routines

 33

Run-Time Library Routines
 void omp_set_num_threads(int num_threads)

 Sets the number of threads that will be used in the next parallel region

 int omp_get_num_threads(void)
 Returns the number of threads currently executing for the parallel region

 int omp_get_thread_num(void)
 Returns the thread number of the thread, within the team, making this call
 The master thread of the team is thread 0

 int omp_get_thread_limit (void)
 Returns the maximum number of OpenMP threads available to a program

 int omp_get_num_procs(void)
 Returns the number of processors that are available to the program

 int omp_in_parallel(void)
 determine if the section of code which is executing is parallel or not
Many others are available for more complicated usage

 34

Reference
 Textbook:
 Parallel Computing Chap8

 openMP Tutorial
 https://computing.llnl.gov/tutorials/openMP/

 openMP API
 http://gcc.gnu.org/onlinedocs/libgomp.pdf

35

	Shared-Memory Programming: OpenMP
	What’s OpenMP
	Example
	OpenMP Directives
	OpenMP Outline
	Parallel Region Constructs --- Parallel Directive
	Parallel Region --- How Many Threads
	Nested Parallel Region
	OpenMP Outline
	Work-Sharing Constructs
	Type of Work-Sharing Constructs
	DO / for Directive
	DO / for Directive --- Schedule Clause
	Scheduling Examples
	Scheduling Examples
	DO / for Directive --- Example
	DO / for Directive --- Order
	DO / for Directive --- Collapse
	SECTIONS Directive
	SECTIONS Directive --- Example
	SINGLE Directive
	OpenMP Outline
	Synchronization Constructs
	LOCK OpenMP Routine
	Example & Comparison
	OpenMP Outline
	OpenMP Date Scope
	Date Scope Attribute Clauses
	Examples
	Date Scope Attribute Clauses
	Reduction Clause Example
	OpenMP Clause Summary
	OpenMP Outline
	Run-Time Library Routines
	Reference

