
Shared-Memory
Programming: Pthread

National Tsing-Hua University
2017, Summer Semester

Outline
 Shared-memory Programming
 Pthread
 Synchronization Problem & Tools

2

Shared-Memory Programming
 Definition: Processes communicate or work together

with each other through a shared memory space
which can be accessed by all processes
 Faster & more efficient than message passing

 Many issues as well:
 Synchronization
 Deadlock
 Cache coherence

 Programming techniques:
 Parallelizing compiler
 Unix processes
 Threads (Pthread, Java)

3

Threads vs. Processes
 Process (heavyweight process):

complete separate program
with its own variables, stack,
heap, and everything else.

 Thread (lightweight process):
share the same memory space
for global variables, resources

 In Linux:
 Threads are created via clone a

process with a flag to indicate
the level of sharing

4

Why Thread?
 Lower creation/management cost vs. Process

 Faster inter-process communication vs. MPI

platform fork() pthread_create() speedup
AMD 2.4 GHz Opteron 17.6 1.4 15.6x
IBM 1.5 GHz POWER4 104.5 2.1 49.8x
INTEL 2.4 GHz Xeon 54.9 1.6 34.3x
INTEL 1.4 GHz Itanium2 54.5 2.0 27.3x

platform MPI Shared
Memory

BW (GB/sec)

Pthreads Worst Case
Memory-to-CPU

BW (GB/sec)

speedup

AMD 2.4 GHz Opteron 1.2 5.3 4.4x
IBM 1.5 GHz POWER4 2.1 4 1.9x
INTEL 2.4 GHz Xeon 0.3 4.3 14.3x
INTEL 1.4 GHz Itanium2 1.8 6.4 3.6x 5

Outline
 Shared-memory Programming
 Pthread
What is Pthread
 Pthread Creation
 Pthread Joining & Detaching

 Synchronization Problem & Tools

6

What is Pthread?
 Historically, hardware vendors have implemented

their own proprietary versions of threads
 POSIX (Potable Operating System Interface)

standard is specified for portability across Unix-like
systems
 Similar concept as MPI for message passing libraries

 Pthread is the implementation of POSIX standard
for thread
 Same relation between MPICH and MPI

7

Pthread Creation
 pthread_create(thread,attr,routine,arg)

 thread: An unique identifier (token) for the new thread
 attr: It is used to set thread attributes. NULL for the default values
 routine: The routine that the thread will execute once it is created
 arg: A single argument that may be passed to routine

 main program

pthread_create(&thread1, NULL, func1, &arg);

pthread_join(thread1, *status);

…

…
…

…

…

thread1

func(&arg) {

 return(*status)
}

…
…

8

Example
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadId) {
 long* data = static_cast <long*> threadId;
 printf("Hello World! It's me, thread #%ld!\n", *data);
 pthread_exit(NULL);
}

int main (int argc, char *argv[]) {
 pthread_t threads[NUM_THREADS];
 for(long tid=0; tid<NUM_THREADS; tid++){
 pthread_create(&threads[tid], NULL, PrintHello, (void *)&tid);
 }
 /* Last thing that main() should do */
 pthread_exit(NULL);
} 9

Pthread Joining & Detaching
 pthread_join(threadId, status)

 Blocks until the specified threadId thread terminates
 One way to accomplish synchronization between threads
 Example: to create a pthread barrier

 pthread_detach(threadId)
 Once a thread is detached, it can never be joined
 Detach a thread could free some system resources

for (int i=0; i<n; i++) pthread_join(thread[i], NULL);

10

Outline
 Shared-memory Programming
 Pthread
 Synchronization Problem & Tools
 Pthread

Mutually exclusion Lock
Condition variable

 POSIX Semaphore
 JAVA Monitor

 Other issues

11

Synchronization Problem
 The outcome of data content should NOT be decided

by the execution order among processes

 Instructions of individual processes/threads may be
interleaved in time

 E.g.: Assume variable
 “counter” is
 shared by processes
 The statement “counter++” & “counter--”may be

implemented in machine language as:
 move ax, counter move bx, counter
 add ax, 1 sub bx, 1
 move counter, ax move counter, bx

Process0
 main() {

 counter++;

 }

Process1
 main() {

 counter--;

 }

…
 …

…

…

12

Instruction Interleaving
 Assume counter is initially 5. One interleaving of

statement is:
 producer: move ax, counter  ax = 5
 producer: add ax, 1  ax = 6
 context switch
 consumer: move bx, counter  bx = 5
 consumer: sub bx, 1  bx = 4
 context switch
 producer: move counter, ax  counter = 6
 context switch
 consumer: move counter, bx  counter = 4
 The value of counter may be either 4, 5, or 6
 The ONLY correct result is 5!

13

Outline
 Shared-memory Programming
 Pthread
 Synchronization Problem & Tools
 Pthread

Mutually exclusion Lock
Condition variable

 POSIX Semaphore
 JAVA Monitor

 Other issues

14

Critical Section & Mutual Exclusion

do {
 entry section
 critical section
 exit section
 remainder section
} while (1);

Get entry permission

Modify shared data

Release entry permission

 Critical Section is a piece of code that can only be
accessed by one process/thread at a time

 Mutual exclusion is the problem to insure only one
process/thread can be in a critical section

 E.g.: The design of entry section & exit section
provides mutual exclusion for the critical section

15

Locks
 Lock: the simplest mechanism for ensuring mutual

exclusion of critical section
 Spinlock is one of the implementation:

 Locks are implemented in Pthreads by a special type
of variables “mutex”

 Mutex is abbreviation of “mutual exclusion”

while (lock == 1); /* no operation in while loop */
lock = 1; /* enter critical section */
 .
critical section
 .
lock = 0; /* leave critical section */

16

Pthread Lock/Mutex Routines
 To use mutex, it must be declared as of type pthread_mutex_t

and initialized with pthread_mutex_init()
 A mutex is destroyed with pthread_mutex_destroy()
 A critical section can then be protected using

pthread_mutex_lock() and pthread_mutex_unlock()
 Example:

specify default
attribute for the mutex

#include “pthread.h”
pthread_mutex_t mutex;
pthread_mutex_init (&mutex, NULL);
pthread_mutex_lock(&mutex); // enter critical section

pthread_mutex_unlock(&mutex); // leave critical section
pthread_mutex_destroy(&mutex);

Critical Section

17

Operating System Concepts – NTHU LSA Lab 18

Bounded-Buffer Problem
 A pool of n buffers, each capable of holding

one item
 Producer:
 grab an empty buffer
 place an item into the buffer
waits if no empty buffer is available

 Consumer:
 grab a buffer and retracts the item
 place the buffer back to the free pool
waits if all buffers are empty

Operating System Concepts – NTHU LSA Lab 19

Bounded-Buffer Problem

in

out

 Producer process produces information that is
consumed by a Consumer process

 Buffer as a circular array with size B
 next free: in
 first available: out
 empty: in = out
 full: (in+1) % B = out

 The solution allows at most (B-1) item in the buffer
 Otherwise, cannot tell the buffer is fall or empty

Operating System Concepts – NTHU LSA Lab 20

/*producer*/
while (1) {
 while (((in + 1) % BUFFER_SIZE) == out)
 ; //wait if buffer is full
 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
}
/*consumer*/
while (1) {
 while (in == out); //wait if buffer is empty
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
}

Shared-Memory Solution

/* global data structure */
#define BUFSIZE 10
item buffer[BUFSIZE];
int in = out = 0;

in out

in out

“in” only modified by producer

“out” only modified by consumer

Operating System Concepts – NTHU LSA Lab 21

Using Mutex Lock
/*consumer*/
while (1) {
 while (counter == 0) ;
 item = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 mutex_lock(mutex);
 counter--;
 mutex_unlock(mutex);
}

/*producer*/
while (1) {
 nextItem = getItem();
 while (counter == BUFFER_SIZE) ;
 buffer[in] = nextItem;
 in = (in + 1) % BUFFER_SIZE;
 mutex_lock(mutex);
 counter++;
 mutex_unlock(mutex);
}

Condition Variables (CV)
 CV represent some condition that a thread can:

 Wait on, until the condition occurs; or
 Notify other waiting threads that the condition has occurred

 Three operations on condition variables:
 wait() --- Block until another thread calls signal() or broadcast()

on the CV
 signal() --- Wake up one thread waiting on the CV
 broadcast() --- Wake up all threads waiting on the CV

 In Pthread, CV type is a pthread_cond_t
 Use pthread_cond_init() to initialize
 pthread_cond_wait (&theCV, &somelock)
 pthread_cond_signal (&theCV)
 pthread_cond_broadcast (&theCV)

22

Using Condition Variable
 Example:

 A threads is designed to take action when x=0
 Another thread is responsible for decrementing the counter

 All condition variable operation MUST be performed while a
mutex is locked!!!

action() {
 pthread_mutex_lock (&mutex)
 if (x != 0)
 pthread_cond_wait (cond, mutex);
 pthread_mutex_unlock (&mutex);
 take_action();
}

counter() {
 pthread_mutex_lock (&mutex)
 x--;
 if (x==0)
 pthread_cond_signal (cond);
 pthread_mutex_unlock (&mutex);
}

pthread_cond_t cond; pthread_mutex_t mutex;
pthread_cond_init (cond, NULL); pthread_mutex_init (mutex, NULL);

23

Semaphore
 A tool to generalize the synchronization problem

 Deadlock may occur if not use appropriately !
 More specifically…

 a record of how many units of a particular resource are
available

If #record = 1  binary semaphore, mutex lock
If #record > 1  counting semaphore

 accessed only through 2 atomic ops: wait & signal
 Spinlock implementation:

 Semaphore is an integer variable
wait (S) {
 while (S <= 0) ;
 S--;
}

signal (S) {
 S++;
}

24

Semaphore Example
 shared data:

semaphore S ; // initially S = 1
 Process Pi:

do {
 wait (S) ;
 critical section
 signal (S);
 remainder section
} while (1) ;

25

POSIX Semaphore
 Semaphore is part of POSIX standard BUT it is not

belonged to Pthread
 It can be used with or without thread

 POSIX Semaphore routines:
 sem_init(sem_t *sem, int pshared, unsigned int value)
 sem_wait(sem_t *sem)
 sem_post(sem_t *sem)
 sem_getvalue(sem_t *sem, int *valptr)
 sem_destory(sem_t *sem)

 Example:

Initial value of the semaphore

Current value of the semaphore
#include <semaphore.h>
sem_t sem;
sem_init(&sem);
sem_wait(&sem);
 // critical section
sem_post(&sem);
sem_destroy(&sem);

26

Operating System Concepts – NTHU LSA Lab 27

Readers-Writers Problem
 A set of shared data objects
 A group of processes

 reader processes (read shared objects)
 writer processes (update shared objects)
 a writer process has exclusive access to a shared object

 Different variations involving priority
 first RW problem: no reader will be kept waiting unless a

writer is updating a shared object
 second RW problem: once a writer is ready, it performs the

updates as soon as the shared object is released
 writer has higher priority than reader
 once a writer is ready, no new reader may start reading

Operating System Concepts – NTHU LSA Lab 28

First Reader-Writer Algorithm
// mutual exclusion for write
semaphore wrt_sem=1
// mutual exclusion for readcount
semaphore mutex=1
int readcount=0;

Writer(){
 while(TRUE){
 wait(wrt_sem);

 // Writer Code

 signal(wrt_sem);
 }
}

Reader(){
 while(TRUE){
 wait(mutex);
 readcount++;
 if(readcount==1)
 wait(wrt_sem);
 signal(mutex);

 // Reader Code

 wait(mutex);
 readcount--;
 if(readcount==0)
 signal(wrt_sem);
 signal(mutex);
 }
}  Readers share a single wrt lock

 Writer may have starvation problem

Acquire write lock
if reads haven’t

release write lock if
no more reads

Semaphore Drawback
 Although semaphores provide a convenient

and effective synchronization mechanism, its
correctness is depending on the programmer
All processes access a shared data object must

execute wait() and signal() in the right order and
right place

 This may not be true because honest
programming error or uncooperative programmer

29

Synchronized Tools in JAVA
 Synchronized Methods (Monitor)

 Synchronized method uses the method receiver as a lock
 Two invocations of synchronized methods cannot interleave

on the same object
 When one thread is executing a synchronized method for an

object, all other threads that invoke synchronized methods for
the same object block until the first thread exist the object

public class SynchronizedCounter {
 private int c = 0;
 public synchronized void increment() { c++; }
 public synchronized void decrement() { c--; }
 public synchronized int value() { return c; }
}

30

Synchronized Tools in JAVA
 Synchronized Statement (Mutex Lock)

 Synchronized blocks uses the expression as a lock
 A synchronized Statement can only be executed once the

thread has obtained a lock for the object or the class that has
been referred to in the statement

 useful for improving concurrency with fine-grained
synchronization public void run()

{
 synchronized(p1)
 {
 int i = 10; // statement without locking requirement
 p1.display(s1);
 }
}

31

The Big Picture
 Getting synchronization right is hard!
 How to pick between locks, semaphores, convars,

monitors???
 Locks are very simple for many cases

 But may not be the most efficient solution
 Condition variables allow threads to sleep while

holding a lock
 Be aware whether they use Mesa or Hoare semantics

 Semaphores provide general functionality
 But also make it really easy to mass up or cause deadlock

 Monitors are a “pattern” for using locks and condition
variables

32

Reference
 Textbook:

 Parallel Computing Chap8

 Pthread Tutorial
 https://computing.llnl.gov/tutorials/pthreads/

 Sychronization Tools:
 http://www.eecs.harvard.edu/~mdw/course/cs61/mediawiki/images/7/7e/
 Lectures-semaphores.pdf

 Pthread API:
 http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

 JAVA Synchronized methods
 http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

33

	Shared-Memory Programming: Pthread
	Outline
	Shared-Memory Programming
	Threads vs. Processes
	Why Thread?
	Outline
	What is Pthread?
	Pthread Creation
	Example
	Pthread Joining & Detaching
	Outline
	Synchronization Problem
	Instruction Interleaving
	Outline
	Critical Section & Mutual Exclusion
	Locks
	Pthread Lock/Mutex Routines
	Bounded-Buffer Problem
	Bounded-Buffer Problem
	Shared-Memory Solution
	Using Mutex Lock
	Condition Variables (CV)
	Using Condition Variable
	Semaphore
	Semaphore Example
	POSIX Semaphore
	Readers-Writers Problem
	First Reader-Writer Algorithm
	Semaphore Drawback
	Synchronized Tools in JAVA
	Synchronized Tools in JAVA
	The Big Picture
	Reference

