Shared-Memory Programming: Pthread

National Tsing-Hua University 2017, Summer Semester

Outline

- Shared-memory Programming
- Pthread
- Synchronization Problem & Tools

Shared-Memory Programming

- **Definition**: Processes communicate or work together with each other through a shared memory space which can be accessed by all processes
 - Faster & more efficient than message passing
- Many issues as well:
 - Synchronization
 - Deadlock
 - Cache coherence
- Programming techniques:
 - Parallelizing compiler
 - Unix processes
 - Threads (Pthread, Java)

Threads vs. Processes

- Process (heavyweight process): complete separate program with its own variables, stack, heap, and everything else.
- Thread (lightweight process): share the same memory space for global variables, resources
- In Linux:
 - Threads are created via clone a process with a flag to indicate the level of sharing

flag	meaning	
CLONE_FS	File-system information is shared.	
CLONE_VM	The same memory space is shared.	
CLONE_SIGHAND	Signal handlers are shared.	
CLONE_FILES	The set of open files is shared.	

Why Thread?

■ Lower creation/management cost vs. Process

platform	fork()	pthread_create()	speedup
AMD 2.4 GHz Opteron	17.6	1.4	15.6x
IBM 1.5 GHz POWER4	104.5	2.1	49.8x
INTEL 2.4 GHz Xeon	54.9	1.6	34.3x
INTEL 1.4 GHz Itanium2	54.5	2.0	27.3x

Faster inter-process communication vs. MPI

platform	MPI Shared Memory BW (GB/sec)	Pthreads Worst Case Memory-to-CPU BW (GB/sec)	speedup
AMD 2.4 GHz Opteron	1.2	5.3	4.4x
IBM 1.5 GHz POWER4	2.1	4	1.9x
INTEL 2.4 GHz Xeon	0.3	4.3	14.3x
INTEL 1.4 GHz Itanium2	1.8	6.4	3.6x

Outline

- Shared-memory Programming
- Pthread
 - What is Pthread
 - > Pthread Creation
 - Pthread Joining & Detaching
- Synchronization Problem & Tools

What is Pthread?

- Historically, hardware vendors have implemented their own proprietary versions of threads
- POSIX (Potable Operating System Interface) standard is specified for portability across Unix-like systems
 - Similar concept as MPI for message passing libraries
- Pthread is the implementation of POSIX standard for thread
 - Same relation between MPICH and MPI

Pthread Creation

- pthread_create(thread,attr,routine,arg)
 - thread: An unique identifier (token) for the new thread
 - > attr: It is used to set thread attributes. NULL for the default values
 - > routine: The routine that the thread will execute once it is created
 - > arg: A single argument that may be passed to routine

Example

```
#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
void *PrintHello(void *threadId) {
 long* data = static cast <long*> threadId;
 printf("Hello World! It's me, thread #%ld!\n", *data);
  pthread exit(NULL);
int main (int argc, char *argv[]) {
  pthread t threads[NUM THREADS];
  for(long tid=0; tid<NUM THREADS; tid++){
        pthread create(&threads[tid], NULL, PrintHello, (void *)&tid);
  /* Last thing that main() should do */
  pthread_exit(NULL);
```

M

Pthread Joining & Detaching

- pthread_join(threadId, status)
 - Blocks until the specified thread terminates
 - > One way to accomplish synchronization between threads
 - Example: to create a pthread barrier
 for (int i=0; i<n; i++) pthread_join(thread[i], NULL);</pre>
- pthread_detach(threadId)
 - > Once a thread is **detached**, it can **never** be joined
 - Detach a thread could free some system resources

Outline

- Shared-memory Programming
- Pthread
- Synchronization Problem & Tools
 - Pthread
 - Mutually exclusion Lock
 - Condition variable
 - POSIX Semaphore
 - > JAVA Monitor
- Other issues

Synchronization Problem

- The outcome of data content should NOT be decided by the execution order among processes
- Instructions of individual processes/threads may be

■ The statement "counter++" & "counter--"may be implemented in machine language as:

```
move ax, counter move bx, counter add ax, 1 sub bx, 1 move counter, ax move counter, bx
```

M

Instruction Interleaving

Assume counter is initially 5. One interleaving of statement is:

producer: move ax, counter

producer: add ax, 1

context switch

consumer: move bx, counter

consumer: sub bx, 1

context switch

producer: move counter, ax

context switch

consumer: move counter, bx

 \rightarrow ax = 5

 \rightarrow ax = 6

 \rightarrow bx = 5

 \rightarrow bx = 4

 \rightarrow counter = 6

 \rightarrow counter = 4

- The value of counter may be either 4, 5, or 6
- The ONLY correct result is 5!

Outline

- Shared-memory Programming
- Pthread
- Synchronization Problem & Tools
 - Pthread
 - Mutually exclusion Lock
 - Condition variable
 - POSIX Semaphore
 - > JAVA Monitor
- Other issues

ne.

Critical Section & Mutual Exclusion

- Critical Section is a piece of code that can only be accessed by one process/thread at a time
- Mutual exclusion is the problem to insure only one process/thread can be in a critical section
- E.g.: The design of entry section & exit section provides mutual exclusion for the critical section

Locks

- Lock: the simplest mechanism for ensuring mutual exclusion of critical section
 - Spinlock is one of the implementation:

```
while (lock == 1);  /* no operation in while loop */
lock = 1;  /* enter critical section */
critical section
.
lock = 0;  /* leave critical section */
```

- Locks are implemented in Pthreads by a special type of variables "mutex"
- Mutex is abbreviation of "mutual exclusion"

Pthread Lock/Mutex Routines

- To use mutex, it must be declared as of type pthread_mutex_t and initialized with pthread_mutex_init()
- A mutex is destroyed with pthread_mutex_destroy()
- A critical section can then be protected using pthread_mutex_lock() and pthread_mutex_unlock()
- Example:

```
#include "pthread.h"
pthread_mutex_t mutex;
pthread_mutex_init (&mutex, NULL);
pthread_mutex_lock(&mutex);

Critical Section

pthread_mutex_unlock(&mutex);
pthread_mutex_unlock(&mutex);
pthread_mutex_destroy(&mutex);

// leave critical section
```


Bounded-Buffer Problem

A pool of n buffers, each capable of holding one item

■ Producer:

- grab an empty buffer
- place an item into the buffer
- > waits if no empty buffer is available

Consumer:

- grab a buffer and retracts the item
- place the buffer back to the free pool
- waits if all buffers are empty

Bounded-Buffer Problem

- Producer process produces information that is consumed by a Consumer process
- Buffer as a circular array with size *B*
 - > next free: in
 - first available: out
 - \triangleright empty: in = out
 - \rightarrow full: (*in*+1) % B = out

- The solution allows at most (B-1) item in the buffer
 - Otherwise, cannot tell the buffer is fall or empty

Shared-Memory Solution

```
/*producer*/
while (1) {
   while (((in + 1) \% BUFFER SIZE) == out)
                                               in
       ; //wait if buffer is full
                                                                out
   buffer[in] = nextProduced;
                                        /* global data structure */
   in = (in + 1) \% BUFFER SIZE;
                                        #define BUFSIZE 10
         "in" only modified by producer
                                        item buffer[BUFSIZE];
/*consumer*/
                                        int in = out = 0;
while (1) {
   while (in == out); //wait if buffer is empty
   nextConsumed = buffer[out];
   out = (out + 1) % BUFFER SIZE;
                                                                out
         "out" only modified by consumer
```


Using Mutex Lock

```
/*producer*/
                                    /*consumer*/
while (1) {
                                    while (1) {
  nextItem = getItem( );
                                      while (counter == 0);
  while (counter == BUFFER SIZE);
                                      item = buffer[out];
  buffer[in] = nextItem;
                                      out = (out + 1) % BUFFER_SIZE;
  in = (in + 1) % BUFFER_SIZE;
                                      mutex lock(mutex);
  mutex_lock(mutex);
                                      counter--;
  counter++;
                                      mutex unlock(mutex);
  mutex unlock(mutex);
```

М

Condition Variables (CV)

- CV represent some condition that a thread can:
 - Wait on, until the condition occurs; or
 - Notify other waiting threads that the condition has occurred
- Three operations on condition variables:
 - wait() --- Block until another thread calls signal() or broadcast() on the CV
 - signal() --- Wake up one thread waiting on the CV
 - broadcast() --- Wake up all threads waiting on the CV
- In Pthread, CV type is a pthread_cond_t
 - Use pthread_cond_init() to initialize
 - pthread_cond_wait (&theCV, &somelock)
 - > pthread_cond_signal (&theCV)
 - > pthread_cond_broadcast (&theCV)

Using Condition Variable

- Example:
 - A threads is designed to take action when x=0
 - Another thread is responsible for decrementing the counter

```
pthread_cond_t cond;
                                         pthread mutex t mutex;
pthread_cond_init (cond, NULL);
                                         pthread_mutex_init (mutex, NULL);
action() {
                                         counter() {
  pthread_mutex_lock (&mutex)
                                          pthread_mutex_lock (&mutex)
  if (x != 0)
                                          X--;
    pthread_cond_wait (cond, mutex);
                                          if (x==0)
  pthread_mutex_unlock (&mutex);
                                            pthread_cond_signal (cond);
 take_action();
                                          pthread_mutex_unlock (&mutex);
```

All condition variable operation MUST be performed while a mutex is locked!!!

100

Semaphore

- A tool to generalize the synchronization problem
 - Deadlock may occur if not use appropriately!
- More specifically...
 - a record of how many units of a particular resource are available
 - ◆ If #record = 1 → binary semaphore, mutex lock
 - ◆ If #record > 1 → counting semaphore
 - > accessed only through 2 atomic ops: wait & signal
- Spinlock implementation:
 - > Semaphore is an integer variable
 wait (S) {
 while (S <= 0);
 S--;
 }
 }</pre>

Semaphore Example

```
■ shared data:
   semaphore S; // initially S = 1
■ Process P<sub>i</sub>:
   do {
     wait (s);
        critical section
     signal (5);
        remainder section
   } while (1);
```


POSIX Semaphore

- Semaphore is part of POSIX standard BUT it is not belonged to Pthread
 - It can be used with or without thread
- POSIX Semaphore routines:

```
    sem_init(sem_t *sem, int pshared, unsigned int value)
    sem_wait(sem_t *sem)
    sem_post(sem_t *sem)
    sem_getvalue(sem_t *sem, int *valptr)
    sem_destory(sem_t *sem)
    Current value of the semaphore
```

Example:

```
#include <semaphore.h>
sem_t sem;
sem_init(&sem);
sem_wait(&sem);
    // critical section
sem_post(&sem);
sem_destroy(&sem);
```

100

Readers-Writers Problem

- A set of shared data objects
- A group of processes
 - reader processes (read shared objects)
 - writer processes (update shared objects)
 - > a writer process has exclusive access to a shared object
- Different variations involving priority
 - first RW problem: no reader will be kept waiting unless a writer is updating a shared object
 - > second RW problem: once a writer is ready, it performs the updates as soon as the shared object is released
 - → writer has higher priority than reader
 - once a writer is ready, no new reader may start reading

First Reader-Writer Algorithm

```
Reader(){
// mutual exclusion for write
                                             while(TRUE){
semaphore wrt_sem=1
                                               wait(mutex);
// mutual exclusion for readcount
                                                 readcount++;
semaphore mutex=1
                                                 if(readcount==1)
int readcount=0;
                            Acquire write lock →
                                                    wait(wrt_sem);
                            if reads haven't
                                               signal(mutex);
Writer(){
   while(TRUE){
                                                   // Reader Code
     wait(wrt_sem);
                                               wait(mutex);
        // Writer Code
                                                 readcount--;
                                                 if(readcount==0)
     signal(wrt_sem);
                          release write lock if -
                                                    signal(wrt_sem);
                          no more reads
                                               signal(mutex);
Readers share a single wrt lock
Writer may have starvation problem
```


Semaphore Drawback

- Although semaphores provide a convenient and effective synchronization mechanism, its correctness is depending on the programmer
 - All processes access a shared data object must execute wait() and signal() in the right order and right place
 - ➤ This may not be true because honest programming error or uncooperative programmer

Synchronized Tools in JAVA

- Synchronized Methods (Monitor)
 - > Synchronized method uses the method receiver as a lock
 - Two invocations of synchronized methods cannot interleave on the same object
 - When one thread is executing a synchronized method for an object, all other threads that invoke synchronized methods for the same object block until the first thread exist the object

```
public class SynchronizedCounter {
    private int c = 0;
    public synchronized void increment() { c++; }
    public synchronized void decrement() { c--; }
    public synchronized int value() { return c; }
}
```


Synchronized Tools in JAVA

- Synchronized Statement (Mutex Lock)
 - > Synchronized blocks uses the **expression** as a lock
 - A synchronized Statement can only be executed once the thread has obtained a lock for the object or the class that has been referred to in the statement

useful for improving concurrency with fine-grained

```
public void run()
{
    synchronized(p1)
    {
        int i = 10; // statement without locking requirement
        p1.display(s1);
    }
}
```

re.

The Big Picture

- Getting synchronization right is hard!
- How to pick between locks, semaphores, convars, monitors???
- Locks are very simple for many cases
 - But may not be the most efficient solution
- Condition variables allow threads to sleep while holding a lock
 - Be aware whether they use Mesa or Hoare semantics
- Semaphores provide general functionality
 - But also make it really easy to mass up or cause deadlock
- Monitors are a "pattern" for using locks and condition variables

Reference

- Textbook:
 - Parallel Computing Chap8
- Pthread Tutorial
 - https://computing.llnl.gov/tutorials/pthreads/
- Sychronization Tools:
 - http://www.eecs.harvard.edu/~mdw/course/cs61/mediawiki/images/7/7e/ Lectures-semaphores.pdf
- Pthread API:
 - http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
- JAVA Synchronized methods
 - http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html