
Message-Passing
Programming: MPI

National Tsing-Hua University
2017, Summer Semester

Outline
 MPI Introduction

 History & Evolution

 Communication Methods
 Synchronous / Asynchronous
 Blocking / Non-Blocking

 MPI API
 Point-to-Point Communication Routines
 Collective Communication Routines
 Group and Communicator Management Routines

 MPI-IO

2

What is MPI
 MPI = Message Passing Interface
 A specification for the
 developers and users
 of message passing libraries

 By itself, it is an interface NOT a library

 Commonly used for distributed memory system & high-
performance computing

 Goal:
 Portable: Run on different machines or platforms
 Scalable: Run on million of compute nodes
 Flexible: Isolate MPI developers from MPI programmers (users)

MPI User
(Program)

MPI
(Interface)

MPI Developer
(MPI Library: MPICH)

3

History and Evolution

 MPI resulted from the efforts of numerous individuals and groups
 Today, MPI implementations are a combination of MPI-1 and MPI-2.

A few implementations include the full functionality of both
 The MPI Forum is now drafting the MPI-3 standard

4

History and Evolution

Various incompatible software
tools was developed

1980 1990

The standard of message passing
interface were discussed

April 1992

First draft MPI standard was presented in
Supercomputing conference

Nov 1993 1996

MPI-2 is
released

1994

Final version of
MPI is released MPI Forum is formed and comprised of 175 individuals

from 40 organizations including computer vendors,
software writers, academia and scientists

Nov 1992

5

Programming Model
 SPMD: Single Program Multiple Data

 Allow tasks to branch or conditionally execute only parts
of the program they are designed to execute

 MPI tasks of a parallel program can not be dynamically
spawned during run time. (MPI-2 addresses this issue).

 Distributed memory
 MPI provide method of sending & receiving message

Source
File

MPI Tasks
………

Processors ………

Task/process 0 Task/process 1
...

...
x

send(&x, 2)

...
...

y

recv(&y, 2)

6

Outline
 MPI Introduction
 Communication Methods
 Synchronous / Asynchronous
 Blocking / Non-Blocking

 MPI API
 MPI-IO

7

Communication Methods
 From the view of the pair of communicated processes

 Synchronous communication --- sending and receiving data
occurs simultaneously

 Asynchronous communication --- sending and receiving data
occurs non-simultaneously

 From the view of individual function call
 Blocking --- has been used to describe routines that do not

return until the transfer is completed
 Non-blocking --- has been used to describe routines that

return whether or not the message had been received
 Synchronous vs. blocking:

 Synchronous comm. commonly implemented by blocking call
 Synchronous comm. intrinsically performs two action:

Transfer Data & Synchronize Processes 8

Synchronous/Blocking Message Passing
 Sender: wait until the complete message can be accepted by

the receiver before sending the message

 Receiver: wait until the message it is expecting arrives

Sender Receiver ..
...

send();

…
... .. recv();

Request to send

Acknowledgment
Message

Sender
blocked

Both processes
continue

Ti
m

e

Sender Receiver …
... .. send();

..
...

recv();
Request to send

Message

Both processes
continue

Ti
m

e Receiver
blocked

9

Asynchronous/Non-Blocking Message Passing
 How message-passing routines can return before the

message transfer has been completed?
 Generally, a message buffer needed between source and

destination to hold message
 Message buffer is a memory space at the sender and/or

receiver side
 For send routine, once the local actions have been

completed and the message is safely on its way, the
process can continue with subsequent work

Sender Receiver ..
…

...
send();

…
... .. recv();

Message buffer Continue
process

Ti
m

e

Read
message
buffer

10

Outline
 MPI Introduction
 Communication Methods
 MPI API
Getting Start
 Environment Management Routine
 Point-to-Point Communication Routines
 Collective Communication Routines
Group and Communicator Management Routines

11

Getting Start
 Header file: “mpi.h”

 Required for all programs that make
MPI library call

 MPI calls:
 Format: rc = MPI_Xxx(parameter, ...)
 Example: rc = MPI_Bcast

(&buffer,count,datatype,root,comm)
 Error code: return as “rc”;

rc=MPI_SUCCESS if successful

 General MPI program structure:

#include “mpi.h”

MPI_Init()

MPI_Finalize()

12

Still executed by
all processes

Getting Start
 Communicators and Groups:

 Groups define which collection
of processes may communicate
with each other

 Each group is associated with a
communicator to perform its
communication function calls

 MPI_COMM_WORLD is the
 pre-defined communicator for
 all processors

 Rank
 An unique identifier (task ID) for

each process in a communicator
 Assigned by the system when

the process initializes
 Contiguous and begin at zero

13

Environment Management Routines
 MPI_Init ()

 Initializes the MPI execution environment
 Must be called before any other MPI functions
 Must be called only once in an MPI program

 MPI_Finalize ()
 Terminates the MPI execution environment
 No other MPI routines may be called after it

 MPI_Comm_size (comm, &size)
 Determines the number of processes in the group associated with a

communicator
 MPI_Comm_rank (comm, &rank)

 Determines the rank of the calling process within the communicator
 This rank is often referred to as a task ID

14

Example
#include "mpi.h"
int main (int argc, char *argv[]) {
 int numtasks, rank, rc;
 rc = MPI_Init (&argc,&argv);
 if (rc != MPI_SUCCESS) {
 printf ("Error starting MPI program. Terminating.\n");
 MPI_Abort (MPI_COMM_WORLD, rc);
 }
 MPI_Comm_size (MPI_COMM_WORLD, &numtasks);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 printf ("Number of tasks= %d My rank= %d\n", numtasks, rank);
 MPI_Finalize ();
}

15

Outline
 MPI Introduction
 Communication Methods
 MPI API
Getting Start
 Environment Management Routine
 Point-to-Point Communication Routines
 Collective Communication Routines
Group and Communicator Management Routines

16

Point-to-Point Communication Routines

 buffer: Address space that references the data to be sent or received
 type: MPI_CHAR, MPI_SHORT, MPI_INT, MPI_LONG, MPI_DOUBLE, …
 count: Indicates the number of data elements of a particular type to be

sent or received
 comm: indicates the communication context
 source/dest: the rank (task ID) of the sender/receiver
 tag: arbitrary non-negative integer assigned by the programmer to

uniquely identify a message. Send and receive operations must match
message tags. MPI_ANY_TAG is the wild card.

 status: status after operation
 request: used by non-blocking send and receive operations

Blocking send MPI_Send(buffer,count,type,dest,tag,comm)
Non-blocking send MPI_Isend(buffer,count,type,dest,tag,comm,request)
Blocking receive MPI_Recv(buffer,count,type,source,tag,comm,status)
Non-blocking receive MPI_Irecv(buffer,count,type,source,tag,comm,request)

17

Blocking Example

MPI_Comm_rank(MPI_COMM_WORLD, &myRank); /* find process rank */
if (myRank == 0) {
 int x=10;
 MPI_Send(&x, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
} else if (myRank == 1) {
 int x;
 MPI_Recv(&x, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, status);
}

Blocking send MPI_Send(buffer,count,type,dest,tag,comm)
Blocking receive MPI_Recv(buffer,count,type,source,tag,comm,status)

18

Non-Blocking Example

 MPI_Wait() blocks until the operation has actually completed
 MPI_Test() returns with a flag set indicating whether

operation completed at that time.

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);/* find process rank */
if (myrank == 0) {
 int x=10;
 MPI_Isend(&x, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, req1);
 compute();
} else if (myrank == 1) {
 int x;
 MPI_Irecv(&x, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, req1);
}
MPI_Wait(req1, status);

Non-Blocking send MPI_ISend(buffer,count,type,dest,tag,comm,request)
Non-Blocking receive MPI_IRecv(buffer,count,type,source,tag,comm,requst)

19

Outline
 MPI Introduction
 Communication Methods
 MPI API
Getting Start
 Environment Management Routine
 Point-to-Point Communication Routines
 Collective Communication Routines
Group and Communicator Management Routines

 MPI-IO
 20

Collective Communication Routines
 MPI_Barrier (comm)

 Creates a barrier synchronization in a group
 Blocks until all tasks in the group reach the same MPI_Barrier call

 MPI_Bcast (&buffer, count, datatype, root, comm)

 Broadcasts (sends) a message from the process with rank "root" to
all other processes in the group

…
.

MPI_Barrier() …

…
.

MPI_Barrier() …

…
.

MPI_Barrier() …

…
.

MPI_Barrier() …

Blocked until
synchronized

7
7 7 7 7

task0 task1 task2 task3
buffer (before)

buffer (after)

root=1; count=1;

21

Collective Communication Routines
 MPI_Scatter (&sendbuf, sendcnt,

sendtype, &recvbuf, recvcnt,
recvtype, root, comm)
 Distributes distinct messages from

a source task to all tasks

 MPI_Gather (&sendbuf, sendcnt,
sendtype, &recvbuf, recvcnt,
recvtype, root, comm)
 Gathers distinct messages from

each task in the group to a single
destination task

 This routine is the reverse
operation of MPI_Scatter

recvbuf
(before)

sendbuf
(after)

1

1 2 3 4
task0 task1 task2 task3

2
3
4

sendbuf
(before)

recvbuf
(after)

1

1 2 3 4

task0 task1 task2 task3

2
3
4

root=1; sendcnt=recvcnt=1;

22

Collective Communication Routines
 MPI_Reduce (&sendbuf, &recvbuf, count, datatype, op, dest, comm)

 Applies a reduction operation on all tasks in the group and places the
result in one task

 Pre-defined Reduction Operations
MPI_MAX Maximum MPI_MIN Minimum
MPI_SUM Sum MPI_PROD Product
MPI_LAND Logical AND MPI_BAND Bit-wise AND
MPI_LOR Logical OR MPI_BOR Bit-wise OR
MPI_LXOR Logical XOR MPI_BXOR Bit-wise XOR

1 2 3 4

10

task0 task1 task2 task3
buffer (before)

buffer (after)

dest=2, count=1; op=MPI_SUM

23

Collective Communication Routines
 MPI_Allgather (&sendbuf,

sendcount, sendtype, &recvbuf,
recvcount, recvtype, comm)
 Concatenation of data to all tasks
 This is equivalent to an MPI_Gather

followed by an MPI_Bcast

 MPI_Allreduce(&sendbuf, &recvbuf,
count, datatype, op, comm)
 Applies a reduction operation and

places the result in all tasks
 This is equivalent to an MPI_Reduce

followed by an MPI_Bcast

recvbuf
(after)

sendbuf
(before)

1 1 1 1

1 2 3 4
task0 task1 task2 task3

2 2 2 2
3 3 3 3
4 4 4 4

1 2 3 4

10 10 10 10

task0 task1 task2 task3 buffer
(before)
buffer
(after)

count=1; op=MPI_SUM

sendcnt = recvcnt = 1;

24

Outline
 MPI Introduction
 Communication Methods
 MPI API
Getting Start
 Environment Management Routine
 Point-to-Point Communication Routines
 Collective Communication Routines
Group and Communicator Management Routines

25

Group and Communicator Routines
 Group & Communicator Data Type

 MPI_Group
 MPI_Comm

 MPI_Comm_group(Comm, &Group)
 Access the group associated with a given communicator

 MPI_Group_incl(Group, size, ranks[], &NewGroup)
 Produce a group by including a subset of members from an

existing group

 MPI_Comm_create(Comm, NewGroup, &NewComm)
 Create a new communicator
 The new communicator must be a subset of the original group

26

Examples: Divide MPI tasks into two groups

27

int rank, numtasks;
MPI_Group orig_group, new_group;
MPI_Comm new_comm

MPI_Init();
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

/* Extract the original group handle */
MPI_Comm_group(MPI_COMM_WORLD, &orig_group);

/* Divide tasks into two distinct groups based upon rank */
int rank1[4] = {0,1,2,3}, rank2[4] = {5,6,7,8};
if (rank < numtasks/2) MPI_Group_incl(orig_group, numtasks/2, ranks1, &new_group);
else MPI_Group_incl(orig_group, numtasks/2, ranks2, &new_group);

/* Create new communicator & Broadcast within the new group */
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
MPI_Barrier(new_comm);
MPI_Finalize();

Outline
 MPI Introduction

 History & Evolution

 Communication Methods
 Synchronous / Asynchronous
 Blocking / Non-Blocking

 MPI API
 Point-to-Point Communication Routines
 Collective Communication Routines
 Group and Communicator Management Routines

 MPI-IO

28

Relative Speed of Components in HPC Platform

 An HPC platform’s I/O subsystems are
typically slow as compared to its other parts

 The I/O gap between memory speed and
average disk access stands at roughly 10-3

29

Concurrent Data Access in a Cluster

30

We need some magic to make
the collection of spinning disks
act like a single disk …

hundreds of thousands of
processors

a few hundreds
spinning disks

Magic

POSIX File Access Operations
 POSIX file system call “fopen()”:

 The same is opened by each processes  multiple file
handlers across your MPI processes

 Open the same file with read permission is OK
 But can’t open with write permission together due file

system locking mechanism  data inconsistency
 To write simultaneously must create multiple files (can’t take

advantage of parallel file system & hard to manage)

31

Parallel file system

P1 P2 P3 P4

file A

fopen() fopen() fopen() fopen()

P1 P2 P3 P4

file A

fopen() fopen() fopen() fopen()

file B file C file D

Parallel file system

MPI-IO File Access Operations
 MPI-IO call “MPI_File_open()”
 File is opened only once in a collective manner
MPI library will share and synchronize with each

other to use the same file handler
 Can handle both read and write together

32

Lustre file system

P1 P2 P3 P4

file A

MPI_File_open()

MPI Library

MPI_File_open() MPI_File_open() MPI_File_open()

fopen()

MPI-IO Independent/Collective I/O
 Collective I/O

 Read/write to a shared
 memory buffer, then issue
 ONE file request
 Reduce #I/O request
  Good for small I/O
 Require synchronization

 Independent I/O
 Read/write individually
 Prevent synchronization
 One request per process
 Request is serialized if

access the same OST
 Good for large I/O

33

Lustre file system

P1 P2

file A

MPI Library

MPI_File_read_all() MPI_File_read_all()

fread()

buffer

Lustre file system

P1 P2

file A

MPI Library

MPI_File_read() MPI_File_read()

fread() fread()

MPI-IO API
 MPI_File_open(MPI_Comm comm, char *filename,
 int amode, MPI_Info info, MPI_File *fh)

 Open a file

 MPI_File_close(MPI_File *fh)
 Close a file

 MPI_File_read/write(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)
 Independent read/write using individual file pointer

 MPI_File_read/write_all(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)
 Collectively read/write using individual file pointer

 MPI_File_sync(MPI_File fh)
 Flush all previous writes to the storage device

34

Reference
 Textbook:
 Parallel Computing Chap2

 MPI Tutorial:
 https://computing.llnl.gov/tutorials/mpi/

 MPI API:
 http://www.mcs.anl.gov/research/projects/mpi/

www/www3/

35

HW1: Odd-Even Sort
 Algo:

 comparing & switch in order between all (odd, even)-indexed
pairs of adjacent elements in the list

 comparing & switch in order between all (even,odd)-indexed
pairs of adjacent elements in the list

 Repeat until the list is sorted

36

2 7 1 8 5 3 6 4
2 7 1 8 3 5 4 6
2 1 7 3 8 4 5 6
1 2 3 7 4 8 5 6
1 2 3 4 7 5 8 6
1 2 3 4 5 7 6 8
1 2 3 4 5 6 7 8

HW1: Odd-Even Sort
 Sequential code:

37

/* Assumes a is an array of values to be sorted. */
var sorted = false;
while(!sorted) {
 sorted=true;
 for(var i = 1; i < list.length-1; i += 2) {
 if(a[i] > a[i+1]) { swap(a, i, i+1); sorted = false; }
 }
 for(var i = 0; i < list.length-1; i += 2) {
 if(a[i] > a[i+1]) { swap(a, i, i+1); sorted = false; }
 }
}

HW1: Odd-Even Sort
 Parallel Code:

1. For each process with odd rank P, send its number to the
process with rank P-1.

2. For each process with rank P-1, compare its number with
the number sent by the process with rank P and send the
larger one back to the process with rank P.

3. For each process with even rank Q, send its number to
the process with rank Q-1.

4. For each process with rank Q-1, compare its number
with the number sent by the process with rank Q and
send the larger one back to the process with rank Q.

5. Repeat 1-4 until the numbers are sorted.
38

	Message-Passing Programming: MPI
	Outline
	What is MPI
	History and Evolution	
	History and Evolution	
	Programming Model
	Outline
	Communication Methods
	Synchronous/Blocking Message Passing
	Asynchronous/Non-Blocking Message Passing
	Outline
	Getting Start
	Getting Start
	Environment Management Routines
	Example
	Outline
	Point-to-Point Communication Routines
	Blocking Example
	Non-Blocking Example
	Outline
	Collective Communication Routines
	Collective Communication Routines
	Collective Communication Routines
	Collective Communication Routines
	Outline
	Group and Communicator Routines
	Examples: Divide MPI tasks into two groups
	Outline
	Relative Speed of Components in HPC Platform
	Concurrent Data Access in a Cluster
	POSIX File Access Operations
	MPI-IO File Access Operations
	MPI-IO Independent/Collective I/O
	MPI-IO API
	Reference
	HW1: Odd-Even Sort
	HW1: Odd-Even Sort
	HW1: Odd-Even Sort

