
Introduction to
Parallel Computing

National Tsing Hua University
Instructor: Jerry Chou
2017, Summer Semester

Outline

 Parallel Computing Introduction
What is parallel computing
Why need parallel computing

 Classifications of Parallel Computers &
Programming Models

 Supercomputer & Latest technologies
 Parallel Program Analysis

2 Parallel Programming – NTHU LSA Lab

What is Parallel Computing?
“Solve a single problem by using multiple processors
(i.e. core) working together”
 Traditionally, program has been written for serial computation

 In parallel computing, use multiple computer resources to solve
a computational problem

Problem Processor
t1 t2 t3 tN

Instruction

Pr
ob

le
m

 Processor
Processor
Processor

t1 t2 t3 tN

Instruction

3 Parallel Programming – NTHU LSA Lab

Difference between parallel computing
& distributed computing
The two terminologies are very closely related.
But come from different backgrounds
 Parallel computing …
Means different activities happen at the same time
 Spread out a single application over many cores/

processors/processes to get it done bigger or faster
Mostly used in scientific computing

 Distributed computing…
Activities across systems or distanced servers
 Focus more on concurrency and resource sharing
 From the business/commercial world

Parallel Programming – NTHU LSA Lab 4

The Universe is Parallel
 Parallel computing is an evolution of serial computing

that attempts to emulate what has always been the
state of affairs in the natural world

5 Parallel Programming – NTHU LSA Lab

Finish in 1 hour!!!
4 hours of work

Why need Parallel Computing
 Save time

 Use more resources to shorten execution with potential
cost saving

 Shorter execution time allows more runs or more tuning
opportunity

6 Parallel Programming – NTHU LSA Lab

DUAL XEON CPU server DGX-1 GPU server (8 GPUs)
FLOPS 3TF 170TF
Node Mem BW 76GB/s 768GB/s
Alexnet Train Time 150 Hr 2Hr
Train in 2Hr >250Nodes 1Node

Why need Parallel Computing
 Solve larger problem

 Impossible or impractical to solve on a single computer
 Scientific computing:

Trillion particles
Tens and hundreds of parameters
TBs of data to be processed/analyzed
Several hours of execution

 using millions of cores (PetaFLOPS)

7

1 trillion particles, 4.225 Gpc box-size
simulation, and 6 kpc force resolution.

The world has been driven by science research!
Parallel Programming – NTHU LSA Lab

Why need Parallel Computing
 Make better use of the underlying parallel hardware

 Advance in computer architecture

12 Cores IBM Blade Multi-core CPU 512 Cores NVIDIA Fermi GPU

8 Parallel Programming – NTHU LSA Lab

The Death of CPU Scaling
 Increase of transistor density ≠ performance

 The power and clock speed improvements collapsed

9

“Parallel Computing is a trend and essential tools
 in today’s world!” Parallel Programming – NTHU LSA Lab

Trend of Parallel Computing

10

Single-Core Era

Enabled by:
 Moore’s Law
 Voltage Scaling

Constraint by:
 Power
 Complexity

Assembly  C/C++Java …

Muti-Core Era

Enabled by:
 Moore’s Law
 SMP

Constraint by:
 Power
 Parallel SW
 Scalability

Pthread  OpenMP …

Heterogeneous
Systems Era

Enabled by:
 Abundant data
 parallelism
 Power efficient GPUs

Constraint by:
 Programming
 models
 Comm. overhead

Shader  CUDA OpenCL …

Distributed
System Era

Enabled by:
 Networking

Constraint by:
 Synchronization
 Comm. overhead

MPI  MapReduce …

Parallel Programming – NTHU LSA Lab 10

Outline

 Parallel Computing Introduction
 Classifications of Parallel Computers &

Programming Models
 Flynn’s classic taxonomy
Memory architecture classification
 Programming model classification

 Supercomputer & Latest technologies
 Parallel Program Analysis

11 Parallel Programming – NTHU LSA Lab

Parallel Computer Classification
 Flynn’s classic taxonomy
 Since 1966 (50 years ago …)
 From the process unit prospective: Classify

computer architecture based two independent
dimensions: Instruction & Data
 SISD

Single Instruction
Single Data

SIMD
Single Instruction

Multiple Data
MISD

Multiple Instruction
Single Data

MIMD
Multiple Instruction

Multiple Data
12 Parallel Programming – NTHU LSA Lab

Flynn’s classic taxonomy: SISD
 Single Instruction, Single Data (SISD):

 A serial (non-parallel) computer
 Single Instruction: Only one instruction stream is being acted

on by the CPU during any one clock cycle
 Single Data: Only one data stream is being used as input

during any one clock cycle
 Example: Old mainframes, single-core processor

13 Parallel Programming – NTHU LSA Lab

Flynn’s classic taxonomy: SIMD
 Single Instruction, Multiple Data (SIMD):

 Single Instruction: All processing units execute the same
instruction at any given clock cycle

 Multiple Data: Each processing unit can operate on a
different data element

 Example: GPU, vector processor (X86 AVX instruction)

14 Parallel Programming – NTHU LSA Lab

Flynn’s classic taxonomy: MISD
 Multiple Instruction, Single Data (MISD):

 Multiple Instruction: Each processing unit operates on the
data independently via separate instruction streams.

 Single Data: A single data stream is fed into multiple
processing units.

 Example: Only experiment by CMU in 1971; Could be used
for fault tolerance

15 Parallel Programming – NTHU LSA Lab

Flynn’s classic taxonomy: MIMD
 Multiple Instruction, Multiple Data (MIMD):

 Multiple Instruction: Every processor may be executing a
different instruction stream

 Multiple Data: Every processor may be working with a
different data stream

 Example: Most modern computers, such as multi-core CPU

16 Parallel Programming – NTHU LSA Lab

Outline

 Parallel Computing Introduction
 Classifications of Parallel Computers &

Programming Models
 Flynn’s classic taxonomy
Memory architecture classification
 Programming model classification

 Supercomputer & Latest technologies
 Parallel Program Analysis

17 Parallel Programming – NTHU LSA Lab

Shared Memory vs. Distributed Memory
Computer Architecture

Parallel Programming – NTHU LSA Lab 18

CPU0 CPU1 CPU2 CPU3 CPU0 CPU1 CPU2 CPU3

MEM0 MEM1 MEM2 MEM3 MEM

Distributed memory Shared memory

Shared Memory Multiprocessor
Computer System
 Single computer with multiple internal multi-

core processors

19 Parallel Programming – NTHU LSA Lab

Shared Memory Computer Architecture
 Uniform Memory Access (UMA):

 Most commonly represented today by Symmetric
Multiprocessor (SMP) machines

 Identical processors
 Equal access times to memory
 Example: commercial servers

 Non-Uniform Memory Access (NUMA):
 Often made by physically linking two or more SMPs
 One SMP can directly access
 memory of another SMP
 Memory access across link is slower
 Example: HPC server

20 Parallel Programming – NTHU LSA Lab

 Connect multiple computers to form a
computing platform without sharing memory

Distributed Memory Multicomputer

21

Cluster: tens of servers

Supercomputer:
hundreds of servers

Datacenter: thousands of servers
Parallel Programming – NTHU LSA Lab

Distributed Memory Multicomputer
 Require a communication network (i.e. not bus)
 to connect inter-processor memory
 Processors have their own memory & address space
 Memory change made by a processor has NO effect on

the memory of other processors
 Programmers or programming tools are responsible to

explicitly define how and when data is communicated
between processors

Network fabric:
 Ethernet,
 InfiniBand

22 Parallel Programming – NTHU LSA Lab

Outline

 Parallel Computing Introduction
 Classifications of Parallel Computers &

Programming Models
 Flynn’s classic taxonomy
Memory architecture classification
 Programming model classification

 Supercomputer & Latest technologies
 Parallel Program Analysis

23 Parallel Programming – NTHU LSA Lab

Parallel Programming Model
 Parallel programming models exist as an abstraction

above hardware & memory architectures

 In general programming models are designed to match
the computer architecture
 Shared memory prog. model for shared memory machine
 Message passing prog. model for distributed memory machine

 But programming models are NOT restricted by the
machine or memory architecture
 Message passing model can be supported on SHARED memory

machine: e.g., MPI on a single server
 Shared memory model on DISTRIBUTED memory machine:

e.g., Partitioned Global Address Space
24 Parallel Programming – NTHU LSA Lab

Shared Memory Programming Model
 A single process can have multiple, concurrent execution paths
 Threads have local data, but also, shares resources
 Threads communicate with each other through global memory
 Threads can come and go, but the main program remains

 to provide the necessary shared resources until the application
has completed

25 Parallel Programming – NTHU LSA Lab

Shared Memory Programming Model
 Implementation

 A library of subroutines called from parallel source code
E.g.: POSIX Thread (Pthread)

 A set of compiler directives imbedded in either serial or
parallel source code

E.g.: OpenMP
 #include <pthread.h>

void print_message_function (void *ptr) {
 printf(“Hello, world.\n");
}
int main() {
 pthread_t thread;
 pthread_create (&thread, NULL, (void *)
 &print_message_function, NULL);
 pthread_join(thread, NULL);
}

#include <omp.h>
int main() {
 #pragma omp parallel
 {
 printf("Hello, world.\n");
 }
}

26 Parallel Programming – NTHU LSA Lab

Message Passing Programming Model
 A set of tasks that use their own local memory

during computation
 Multiple tasks can reside on the same physical machine

and/or across an arbitrary number of machines

 Tasks exchange data through communications by
sending and receiving messages (Memory copy)

 MPI API:
 Send, Recv, Bcast,
 Gather, Scatter, etc.

27 Parallel Programming – NTHU LSA Lab

Shared Memory vs. Message Passing

 Convenient:
 Can share data structures
 Just annotate loops
 Closer to serial code

 Disadvantages
 No locality control
 Does not scale
 Race conditions

28

Shared Memory Message Passing
 Scalable

 Locality control
 Communication is all explicit in

code (cost transparency)

 Disadvantage
 Need to rethink entire

application/ data structures
 Lots of tedious pack/unpack code
 Don’t know when to say “receive”

for some problems
Parallel Programming – NTHU LSA Lab

Summary
 The designs and popularity of programming model and

parallel systems are highly influenced by each other

 openMP, MPI, Pthreads, CUDA are just some of the
parallel languages for users to do parallel programming

 In reality, knowing what is parallel computing is more
IMPORTANT than knowing how to do parallel
programming, because that’s how you can…
 Learn a new parallel programming tools quickly
 Understand the performance of your program
 Optimize the performance of your program

29 Parallel Programming – NTHU LSA Lab

Outline

 Parallel Computing Introduction
 Classifications of Parallel Computers &

Programming Models
 Supercomputer & Latest technologies
 Supercomputer
 Processor technology
 Interconnect & Network technology
 I/O & Storage technology

 Parallel Program Analysis

30 Parallel Programming – NTHU LSA Lab

Today’s Typical Parallel Computers

Parallel Programming – NTHU LSA Lab 31

Racks: 16~42U Node/Server: 1~4U

Multi-core Processor:
100x cores/1000xthreads Co-Processor: 4~12 cores

Supercomputers
 Definition: A computer with a high-level

computational capacity compared to
a general-purpose computer

 Its performance is measured in floating-
point operations per second (FLOPS) instead
of million instructions per second (MIPS)

 Ranked by the TOP500 list since 1993
According to the HPL benchmark results
Announced twice a year at ISC and SC conferences

32 Parallel Programming – NTHU LSA Lab

HPL Benchmark
 A parallel implementation of Linpack library
Measure floating point rate of execution

 Computation:
 To solve linear matrix equation

 LU factorization by Panel factorization.
Divide a matrix into many pieces.
All parameters must be determined by user.

33 Parallel Programming – NTHU LSA Lab

What makes it a supercomputer
 What makes it a supercomputer?
All the latest hardware technologies
 Customized system configurations
Optimized software and libraries
Huge amount of cost in money and energy

 It represents a competition
 of technology and wealth
 among a countries ……

34 Parallel Programming – NTHU LSA Lab

TOP500 List (2016 June)

35

 Accelerator provides huge computing power
 Titan’s Rmax without GPU was only 2K!!!

Country System Vendor Power (kW) #cores Accelerator Rmax Rpeak
(PFLOPS)

1 China TaihuLight NRCPC 15,371 10M 93.0 125.4

2 China Tianhe-2 NUDT 17,808 3M Xeon Phi 33.9 54.9

3 US Titan Cray 8,209 560K Tesla K20X 17.6 27.1

4 US Sequoia IBM 7,890 1.5M 17.2 20.1

5 Japan K Fujitsu 12,660 705K 10.5 11.3

6 US Mira IBM 3,954 786K 8.6 10.0

7 US Trinity Cray 301K 8.1 11.1

8 Swiss Piz Daint Cray

2,325 116K Tesla K20X 6.2 7.8

Parallel Programming – NTHU LSA Lab

TOP500 Trend: CPU
 Intel CPU counts for more than 80%

36 Parallel Programming – NTHU LSA Lab

TOP500 Trend: Interconnect
 InfiniBand has much larger share in performance

37 Parallel Programming – NTHU LSA Lab

TOP500 Trend: Vendor
 CRAY and IBM still have larger share for

performance

38 Parallel Programming – NTHU LSA Lab

 China has a huge jump because of the new
supercomputer

TOP500 Trend: Country

39

2015 Nov 2016 June

Parallel Programming – NTHU LSA Lab

TOP500 Trend: Computing power
 Goal is to reach Exascale computing 1EFlop (10^18) /s

by 2020

40 Parallel Programming – NTHU LSA Lab

Outline

 Parallel Computing Introduction
 Classifications of Parallel Computers &

Programming Models
 Supercomputer & Latest technologies
 Supercomputer
 Processor technology
 Interconnect & Network technology
 I/O & Storage technology

 Parallel Program Analysis

41 Parallel Programming – NTHU LSA Lab

Limitation of CPU
General Purpose Processor
 A general purpose CPU (central processing unit) can do

anything, but its design is against the goal of achieving
the best performance for a specific application.

42 [source: nvidia] Parallel Programming – NTHU LSA Lab

Comparison Numbers

43
Source: https://www.xcelerit.com/computing-benchmarks/libor/haswell_k80_phi/

 Intel Xeon E5-
2697 v3 CPU
(Haswell)

NVIDIA Tesla
K80 GPU
(Kepler)

Intel Xeon Phi
7120P (Knight's
Corner)

Cores 2x14 2x13(SMX) 61
Logical Cores 2x28 2x2,496 244
Frequency 2.60GHz 562MHz 1.238GHz
GFLOPS(double) 2x583 2x1,455 1,208
Max memory 768GB 2x12GB 16GB
Max Mem BW 2x68GB/s 2x240GB/s

(Internal)
352GB/s
(Internal)

Price 2,700 USD 5,000 USD 4,000 USD

Parallel Programming – NTHU LSA Lab

NVidia General Purpose GPU
 Extend GPU as a form of stream processor (or a vector processor)

for general purpose computing
 Suited for embarrassingly parallel tasks and vectorized operations
 Hierarchical memory structure
 Used as accelerators/co-processor

Parallel Programming – NTHU LSA Lab 44

Host

Input Assembler

Thread Execution Manager

SM

PBSM

SM

PBSM

SM

PBSM

SM

PBSM

SM

PBSM

SM

PBSM

SM

PBSM

……

Load/Store

Global Memory & Constant Memory

GPU (Device)

Intel Xeon Phi
 A brand name given to a series of manycore processors follows

the Intel's MIC (Many Integrated Core) architecture
 Typically it has 50-70 processors on the die connected by a bidirectional

Ring network
 More like a separate system

 It runs Intel assembly code just like the main CPU in your computer
 It has an embedded linux
 Second generation chips (Knights Landing) could be used as a

standalone CPU

Parallel Programming – NTHU LSA Lab 45

Sunway TaihuLight SW26010
 Each node contains four clusters of 64 CPEs (SIMD)
 Each cluster is accompanied by a MPE (general

purpose)

Parallel Programming – NTHU LSA Lab 46

Google Tensor Processing Unit (TPU)
 Specifically for deep learning (tensorflow framework)
 30–80X higher performance-per-watt than

contemporary CPUs and GPUs
 Only for reduced precision computation (e.g. 8-bit precision)
 Matrix Multiplier Unit: use a to achieve hundreds of

thousands of matric operation in a single clock cycle
 Systolic array: The ALUs perform only multiplications and

additions in fixed patterns

 Reference
 https://cloud.google.com/blog/big-data/2017/05/an-in-

depth-look-at-googles-first-tensor-processing-unit-tpu

Parallel Programming – NTHU LSA Lab 47

Outline

 Parallel Computing Introduction
 Classifications of Parallel Computers &

Programming Models
 Supercomputer & Latest technologies
 Supercomputer
 Processor technology
 Interconnect & Network technology
 I/O & Storage technology

 Parallel Program Analysis

48 Parallel Programming – NTHU LSA Lab

Communication
 Communication has the most impact to the

performance of parallel programs (Even more critical
to computing or memory).
 Network is generally much slower than CPU
 Communication is common to parallel programs
 Synchronization is expensive and could grow exponentially

to the number of servers

49 Parallel Programming – NTHU LSA Lab

Interconnection Networks
 Network design considerations
 Scalability, Performance, Resilience and Cost

50

Network Devices (Cable, Switch, Adapter, etc.)
• Bandwidth: #bits transferred per second
• Latency: time to pack, unpack, and send a message
• Scalability: # of ports on the adapter and switch

Interconnection Network Topology
• Network diameter
• Re-routing path for fault tolerance
• # fan-in & fan-out degree per node

Application
• Communication pattern & protocol

Parallel Programming – NTHU LSA Lab

Network Topology

51

 Cheapest solution, but not reliable and long
latency

Diameter
(latency)

Bisection
(resilience)

#Links
(cost)

Degree
(scalability)

Linear array P-1 1 P-1 2

Parallel Programming – NTHU LSA Lab

Network Topology

52

 Particularly suitable for some of the
applications such as the ocean
application and matrix calculation

 Can be extended to 3-D mesh

Diameter
(latency)

Bisection
(resilience)

#Links
(cost)

Degree
(scalability)

Linear array P-1 1 P-1 2
Ring p/2 2 P 2
Tree 2log2 𝑝 1 2(p-1) 3

2-D Mesh 2(𝑝 − 1) 𝑝 2 𝑝(𝑝 − 1) 4

Parallel Programming – NTHU LSA Lab

Network Topology

53

 Smaller diameter, more bisection, but also higher
cost and degree than Mesh and Torus

 More suitable for smaller scale systems

Diameter
(latency)

Bisection
(resilience)

#Links
(cost)

Degree
(scalability)

Linear array P-1 1 P-1 2
Ring p/2 2 P 2
Tree 2log2 𝑝 1 2(p-1) 3

2-D Mesh 2(𝑝 − 1) 𝑝 2 𝑝(𝑝 − 1) 4
2-D Torus 𝑝-1 2 𝑝 2p 4

Hypercube log2 𝑝 p/2 p/2 x log2 𝑝 log2 𝑝

Parallel Programming – NTHU LSA Lab

Network Topology
 4-D hypercube
 Each node is numbered with a bitstring that is

log2(p) bits long.
One bit can be flipped per hop so the diameter is

log2(p).

54 Parallel Programming – NTHU LSA Lab

6-Dimensional Mesh/Torus on K-Computer
 K-computer (Kei means “京”)

 Designed by FUJITSU, Japan
 World’s #5 fastest supercomputer
 80,000 compute nodes; 640,000 cores
 Network connection: Tofu

 Introduction video clip:
 http://www.fujitsu.com/global/about/businesspolicy/tech/

k/whatis/network/

55 Parallel Programming – NTHU LSA Lab

Network Device: InfiniBand
 A computer network communications link used in high-

performance computing featuring very high throughput
 It is the most commonly used interconnect in supercomputers
 Manufactured by Mellanox

56

InfiniBand

Ethernet

Parallel Programming – NTHU LSA Lab

InfiniBand: Usage in TOP500

57 Parallel Programming – NTHU LSA Lab

InfiniBand: RDMA

58 Source: Mellanox Parallel Programming – NTHU LSA Lab

InfiniBand vs. Gigabit Ethernet

59

InfiniBand Ethernet

Protocol

Guaranteed credit
based flow control

Best effort delivery

End-to-End congestion
management

TCP/IP protocol. Designed for
L3/L4 switching

Hardware based
retransmission

Software based
retransmission

RDMA YES NO (only now starting)
Latency Low High
Throughput High Low
Max cable length 4km upto 70km

Price 36port switch: 25k USD
QDR adapter: 500USD

36port switch: 1.5k USD
Network card: 50 USD

Parallel Programming – NTHU LSA Lab

Outline

 Parallel Computing Introduction
 Classifications of Parallel Computers &

Programming Models
 Supercomputer & Latest technologies
 Supercomputer
 Processor technology
 Interconnect & Network technology
 I/O & Storage technology

 Parallel Program Analysis

60 Parallel Programming – NTHU LSA Lab

How About I/O?
 Not so great…

61
Source: http://www.mostlycolor.ch/2015_10_01_archive.html

Parallel Programming – NTHU LSA Lab

Opportunity in I/O
 Memory hierarchy
New storage technology is coming: Flash
 It is still challenged to put the data in the right place,

at right time.
 There is always a price
 to pay

62

Main memory
Flash

(Non-volatile memory)

Hard Disk Drive

Magnetic tape Storage Systems

Cache
register

Parallel Programming – NTHU LSA Lab

Opportunity in I/O
 Parallel file and IO systems
 Lustre file system, MPI-IO

63

IO
server

Parallel Programming – NTHU LSA Lab

Opportunity in I/O
 Burst buffering
Add non-volatile RAM at the IO server nodes as a

buffer to smooth the burst traffic pattern for
improving the IO performance of storage systems,
and reduce the IO latency

64 Parallel Programming – NTHU LSA Lab

Summary
 People has been and will always be able to find a way to

keep the growth of computing
 Technology: CPU scaling, distributed computing, new

processor architecture
 Optimization: algorithm, data management, compiler
 System design: network topology, file system

 It is more than just computing
 Networks and IO become greater concerns

 Does the performance report from supercomputers
really meets the needs of applications?
 People start re-thinking what should be the right objective

and benchmark for designing the next generation of
supercomputers.

65 Parallel Programming – NTHU LSA Lab

Outline

 Parallel Computing Introduction
 Classifications of Parallel Computers &

Programming Models
 Supercomputer & Latest technologies
 Parallel Program Analysis
Speedup & Efficiency
Strong scalability vs. Weak scalability
Time complexity & Cost optimality

66 Parallel Programming – NTHU LSA Lab

Speedup Factor
 Program speedup factor: 𝑆 𝑝 = 𝑇𝑠

𝑇𝑝

 𝑇𝑠: execution time using the BEST sequential algorithm
 𝑇𝑝: execution time using 𝒑 processor

 Linear speedup: 𝑆 𝑝 = 𝑝
 Ideal maximum speedup in theory

 Superlinear speedup: 𝑆 𝑝 > 𝑝
 Occasionally happen in practice
 Extra HW resource (e.g. memory)
 SW or HW optimization (e.g. caching)

 System efficiency: 𝐸 𝑝 = 𝑇𝑠
𝑇𝑝×𝑝

= 𝑆(𝑝)
𝑝

× 100%
Sp

ee
du

p
fa

ct
or

Number of processors

Superlinear

Normal cases

67

Ideal

Parallel Programming – NTHU LSA Lab

Maximum Speedup
 Difficult to reach ideal max. speedup: S(p)=p
Not every part of a computation can be parallelized
 (results in processor idle)
Need extra computations in the parallel version
 (i.e. due to synchronization cost)
 Communication time between processes
 (normally the major factor)

Sp
ee

du
p

fa
ct

or

Number of processors
Normal cases

68 Parallel Programming – NTHU LSA Lab

Maximum Speedup

…

……

p processors

𝑡𝑠

69

 Let 𝑓 be the fraction of computations that can
NOT be parallelized
 𝑆 𝑝 = 𝑡𝑠

𝑓𝑡𝑠+ 1−𝑓 𝑡𝑠/𝑝
= 𝑝

1+ 𝑝−1 𝑓

Parallel Programming – NTHU LSA Lab

Maximum Speedup


70 Parallel Programming – NTHU LSA Lab

Outline

 Parallel Computing Introduction
 Classifications of Parallel Computers &

Programming Models
 Supercomputer & Latest technologies
 Parallel Program Analysis
Speedup & Efficiency
Strong scalability vs. Weak scalability
Time complexity & Cost optimality

71 Parallel Programming – NTHU LSA Lab

Strong Scaling
 The problem size stays fixed but the number of

processing elements are increased.
 It is used to find a "sweet spot" that allows the

computation to complete in a reasonable amount of
time, yet does not waste too many cycles due to parallel
overhead.

 Linear scaling is achieve if the speedup is equal to the
number of processing elements.

72
of cores

Execution
Time

of cores

speedup
Linear speedup

Parallel Programming – NTHU LSA Lab

Weak Scaling
 The problem size (workload) assigned to each processing

element stays fixed and additional processing elements
are used to solve a larger total problem

 It is a justification for programs that take a lot of memory
or other system resources (e.g., a problem wouldn't fit in
RAM on a single node)

 Linear scaling is achieved if the run time stays constant
while the workload is increased

73
of cores

Execution
Time

of cores

speedup
Linear speedup

Parallel Programming – NTHU LSA Lab

Strong Scaling vs. Weak Scaling
 Strong scaling
 Linear scaling is harder to achieve, because of the

communication overhead may increase
proportional to the scale

 Weak scaling
 Linear scaling is easier to achieve because

programs typically employ nearest-neighbor
communication patterns where the
communication overhead is relatively constant
regardless of the number of processes used

74 Parallel Programming – NTHU LSA Lab

Outline

 Parallel Computing Introduction
 Classifications of Parallel Computers &

Programming Models
 Supercomputer & Latest technologies
 Parallel Program Analysis
Speedup & Efficiency
Strong scalability vs. Weak scalability
Time complexity & Cost optimality

75 Parallel Programming – NTHU LSA Lab

Time Complexity Analysis

 Tp = Tcomp + Tcomm

 Tp: Total execution time of a parallel algorithm
 Tcomp: Computation part
 Tcomm: Communication part

 Tcomm = q (Tstartup + n Tdata)
 Tstartup: Message latency (assumed constant)
 Tdata: Transmission time to send one data item
 n: Number of data items in a message
 q: Number of message

T co
m

m

 # of data items

Startup time

76 Parallel Programming – NTHU LSA Lab

Time Complexity Example 1
 Algorithm phase:

1. Computer 1 sends n/2 numbers to computer 2
2. Both computers add n/2 numbers simultaneously
3. Computer 2 sends its partial result back to computer 1
4. Computer 1 adds the partial sums to produce the final result

 Complexity analysis:
 Computation (for step 2 & 4):

Tcomp = n/2 + 1 = O(n)
 Communication (for step 1 & 3):

Tcomm = (Tstartup + n/2 x Tdata) + (Tstartup + Tdata)
 = 2Tstartup + (n/2 + 1) Tdata = O(n)

 Overall complexity: O(n)
77 Parallel Programming – NTHU LSA Lab

Time Complexity Example 2

 Adding n numbers using m processes
Evenly partition numbers to processes

Parallel Programming – NTHU LSA Lab 78

+ + + ……………

𝑥0 … 𝑥(𝑛/𝑚−1) 𝑥𝑛/𝑚 … 𝑥(2𝑛/𝑚−1) 𝑥 𝑚−1 𝑛/𝑚 … 𝑥𝑛−1

+

Partial sums

Sum

Time Complexity Example
 Sequential:𝑂(𝑛)
 Parallel:

 Phase1: Send numbers to slaves
𝑡𝑐𝑐𝑐𝑐𝑐 = 𝑚(𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (𝑛/𝑚)𝑡𝑑𝑑𝑑𝑑)

 Phase2: Compute partial sum
𝑡𝑐𝑐𝑐𝑐𝑐 = 𝑛/𝑚 − 1

 Phase3: Send results to master
𝑡𝑐𝑐𝑐𝑐2 = 𝑚(𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑡𝑑𝑑𝑑𝑑)

 Phase4: Compute final accumulation
𝑡𝑐𝑐𝑐𝑐2 = 𝑚 − 1

 Overall:
𝑡𝑝 = 2𝑚𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (𝑛 + 𝑚)𝑡𝑑𝑑𝑑𝑑+𝑚 +

𝑛
𝑚
− 2 = 𝑂(𝑚 + 𝑛/𝑚)

79 Parallel Programming – NTHU LSA Lab

Tradeoff
between

computation &
communication

Cost-Optimal Algorithm

 Definition:
Cost to solve a problem is proportional to the

execution time on a single processor system
O(Tp) x N = O(Ts)

 Example:
Sequential algo: O(N log N)
Parallel algo1: uses N processor with O(log N)
Parallel algo2: uses N2 processor with O(1)

80 Parallel Programming – NTHU LSA Lab

Reference
 Textbook: Parallel Computing Chap1
 TOP500: https://www.top500.org/
 Blaise Barney, Lawrence Livermore National

Laboratory, Introduction to Parallel Computing,
https://computing.llnl.gov/tutorials/parallel_comp/

 Flynn's taxonomy,
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

 K computer, http://www.fujitsu.com/
global/about/businesspolicy/tech/k/

 InfiniBand, http://www.infinibandta.org/
 81 Parallel Programming – NTHU LSA Lab

https://www.top500.org/
https://computing.llnl.gov/tutorials/parallel_comp/
https://en.wikipedia.org/wiki/Flynn's_taxonomy
http://www.fujitsu.com/global/about/businesspolicy/tech/k/
http://www.fujitsu.com/global/about/businesspolicy/tech/k/
http://www.infinibandta.org/

	Introduction to �Parallel Computing
	Outline
	What is Parallel Computing?
	Difference between parallel computing & distributed computing
	The Universe is Parallel
	Why need Parallel Computing
	Why need Parallel Computing
	Why need Parallel Computing
	The Death of CPU Scaling
	Trend of Parallel Computing
	Outline
	Parallel Computer Classification
	Flynn’s classic taxonomy: SISD
	Flynn’s classic taxonomy: SIMD
	Flynn’s classic taxonomy: MISD
	Flynn’s classic taxonomy: MIMD
	Outline
	Shared Memory vs. Distributed Memory�Computer Architecture
	Shared Memory Multiprocessor Computer System
	Shared Memory Computer Architecture
	Distributed Memory Multicomputer
	Distributed Memory Multicomputer
	Outline
	Parallel Programming Model
	Shared Memory Programming Model
	Shared Memory Programming Model
	Message Passing Programming Model
	Shared Memory vs. Message Passing
	Summary
	Outline
	Today’s Typical Parallel Computers
	Supercomputers
	HPL Benchmark
	What makes it a supercomputer
	TOP500 List (2016 June)
	TOP500 Trend: CPU
	TOP500 Trend: Interconnect
	TOP500 Trend: Vendor
	TOP500 Trend: Country
	TOP500 Trend: Computing power
	Outline
	Limitation of CPU�General Purpose Processor
	Comparison Numbers
	NVidia General Purpose GPU
	Intel Xeon Phi
	Sunway TaihuLight SW26010
	Google Tensor Processing Unit (TPU)
	Outline
	Communication
	Interconnection Networks
	Network Topology
	Network Topology
	Network Topology
	Network Topology
	6-Dimensional Mesh/Torus on K-Computer
	Network Device: InfiniBand
	InfiniBand: Usage in TOP500
	InfiniBand: RDMA
	InfiniBand vs. Gigabit Ethernet
	Outline
	How About I/O?
	Opportunity in I/O
	Opportunity in I/O
	Opportunity in I/O
	Summary
	Outline
	Speedup Factor
	Maximum Speedup
	Maximum Speedup
	Maximum Speedup
	Outline
	Strong Scaling
	Weak Scaling
	Strong Scaling vs. Weak Scaling
	Outline
	Time Complexity Analysis
	Time Complexity Example 1
	Time Complexity Example 2
	Time Complexity Example
	Cost-Optimal Algorithm
	Reference

